精英家教网 > 高中数学 > 题目详情
15.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四个小组的频率以及频率分布直方图中第四个小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分.

分析 (1)第四小组分数在[70,80)内的频率为,即可求出第四个小矩形的高,
(2)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相差再求出它们的和即可求出本次考试的平均分

解答 解:(1)第四小组分数在[70,80)内的频率为:
1-(0.005+0.01+0.015+0.015+0.025)×10=0.30 则第四个小矩形的高为=0.03,
(2)由题意60分以上的各组频率和为:(0.015+0.03+0.025+0.005)×10=0.75,
故这次考试的及格率约为75%,
由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,
得本次考试中的平均分约为71:

点评 本题主要考查了频率及频率分布直方图,以及平均数的有关问题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设常数a∈R,函数f(x)=|x-1|+|x2-a|,若f(2)=1,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.圆柱的侧面展开图是边长分别为4π、1的矩形,则该圆柱的体积为4π或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)当a=0时,判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,则圆的位置满足(  )
A.截两坐标轴所得弦的长度相等B.与两坐标轴都相切
C.与两坐标轴相离D.上述情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.
(1)试求S关于θ的函数关系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数246810
售价16139.574.5
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在[0,+∞)上的增函数,则满足不等式f(2x-1)<f($\frac{1}{3}$)的实数x的取值范围是(  )
A.(-∞,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

同步练习册答案