精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的单调区间;

(2)若函数的图象在点处的切线的倾斜角为45°,对于任意的,函数在区间上总不是单调函数,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析】(1)求出函数的定义域,对函数求导后,分类讨论函数的单调区间.(2)倾斜角为,斜率为,根据斜率为可求得的值.化简的表达式,求出的导数,将函数在区间上不是单调函数的问题,转化为函数导数在区间上有变号零点问题来求解.

试题解析

(1)函数f(x)的定义域为(0,+∞),且f′(x)=.

a>0时,f(x)的增区间为(0,1),减区间为(1,+∞);

a<0时,f(x)的增区间为(1,+∞),减区间为(0,1);

a=0时,f(x)不是单调函数.

(2)由(1)及题意得f′(2)=-=1,即a=-2,

f(x)=-2ln x+2x-3,f′(x)=.

g(x)=x3x2-2x

g′(x)=3x2+(m+4)x-2.

g(x)在区间(t,3)上总不是单调函数,

g′(x)=0在区间(t,3)上有变号零点.由于g′(0)=-2,

g′(t)<0,即3t2+(m+4)t-2<0对任意t∈[1,2]恒成立,

由于g′(0)<0,故只要g′(1)<0且g′(2)<0,

m<-5且m<-9,即m<-9;

g′(3)>0,即m>-.

所以-m<-9.

即实数m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2a2,a4的等差中项.

(1)求数列{an}的通项公式;

(2)bn=,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是 ( )

. 如果共面 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx, ), =(cosx,﹣1).
(1)当 时,求tan(x﹣ )的值;
(2)设函数f(x)=2( + ,当x∈[0, ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(Ⅰ)用d表示a1 , a2 , 并写出an+1与an的关系式;
(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ +2﹣2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+ + +…+ (2n+1)+ (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是

1)求椭圆E的方程;

2)过点,斜率为k的动直线与椭圆E相交于AB两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求证:是偶函数;

(2)求证:上是增函数;

(3)设,且),若对任意的,在区间上总存在两个不同的数,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案