精英家教网 > 高中数学 > 题目详情

【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘31(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:l可以多次出现),则n的所有不同值的个数为

A. 4 B. 6 C. 8 D. 32

【答案】B

【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解的所有可能的取值.

详解:如果正整数按照上述规则施行变换后第八项为1,

则变换中的第7项一定为2,

变换中的第6项一定为4,

变换中的第5项可能为1,也可能是8,

变换中的第4项可能是2,也可能是16,

变换中的第4项为2时,变换中的第3项是4,变换中的第2项是18,变换中的第1项是26,

变换中的第4项为16时,变换中的第3项是325,变换中的第2项是64108,变换中的第1项是1282120,或3,

的所有可能的取值为,共6个,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有如下公式:,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.

(Ⅰ)设对乙种产品投入资金(万元),求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中:

①若,满足,则的最大值为4;

②若,则函数的最小值为3;

③若,满足,则的最大值为

④若,满足,则的最小值为2;

⑤函数的最小值为9.

正确的________.(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是(  )

x

6

8

10

12

y

6

m

3

2

A. 变量之间呈现负相关关系

B. 的值等于5

C. 变量之间的相关系数

D. 由表格数据知,该回归直线必过点(9,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们生活水平的不断提高,家庭理财越来越引起人们的重视.某一调查机构随机调查了5个家庭的月收入与月理财支出(单位:元)的情况,如下表所示:

月收入(千元)

8

10

9

7

11

月理财支出(千元)

(I)在下面的坐标系中画出这5组数据的散点图;

(II)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(III)根据(II)的结果,预测当一个家庭的月收入为元时,月理财支出大约是多少元?

(附:回归直线方程中,.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,

(1)求证:CD⊥平面SAD.

(2)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax4lnx+bx4﹣cx0)在x=1处取得极值﹣3﹣c,其中abc为常数.

1)试确定ab的值;

2)讨论函数fx)的单调区间;

3)若对任意x0,不等式fx≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,第一象限内有定点和射线,已知的倾斜角分别为 轴上的动点共线.

(1)求点坐标(用表示);

(2)求面积关于的表达式

(3)求面积的最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列说法正确的是____________

①函数的定义域为

②函数为奇函数;

③函数的值域为

④函数在定义域上为增函数;

⑤对于,均有

查看答案和解析>>

同步练习册答案