精英家教网 > 高中数学 > 题目详情

【题目】已知向量 .
(1)若 ,且 ,求 的值;
(2)将函数 的图像向右平移 个单位长度得到函数 的图像,若函数 上有零点,求 的取值范围.

【答案】
(1)解:因为

所以 .


(2)解:因为

,所以 .

因为 ,所以 ,所以 .

,所以 的取值范围为 .


【解析】(1)考察了正切的诱导公式,向量共线的坐标运算,二倍角公式及同角三角函数中“1”的妙用
(2)考察了向量数量积的坐标运算,辅助角公式,平移变换,正弦函数的单调性,及函数的零点。属中档题
【考点精析】解答此题的关键在于理解二倍角的正弦公式的相关知识,掌握二倍角的正弦公式:,以及对函数的零点的理解,了解函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知函数,其中,记函数的定义域为.

(1)求函数的定义域

(2)若函数的最大值为,求的值;

(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足+n=2(n∈)

(1)证明:数列为等比数列,并求数列的通项公式;

(2)数列满足(n∈),其前n项和为,试求满足+>2018的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且平面平面分别是的中点.

(I)求证:平面

(II)求证:

(III)求BA1与平面所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的个数。
(1)写出f(6)的值;
(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为 ,第二次出现的点数为 ,则事件“ ”的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期和递减区间;

(2)当时,求的最大值和最小值,以及取得最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求证:数列{ }是等差数列,并求{an}的通项公式;
(Ⅱ)设bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 试比较an与8Sn的大小.

查看答案和解析>>

同步练习册答案