精英家教网 > 高中数学 > 题目详情

【题目】11个兴趣班,若干学生参与(可重复参与),每个兴趣班人数相同(招满,人数未知).已知任意九个兴趣班包括了全体学生,而任意八个兴趣班没有包括全体学生求学生总人数的最小值.

【答案】165

【解析】

11个兴趣班的学生组成的集合为.

由题意,知.

.

由题设,知任意九个集合的并为,任意八个集合的并是的真子集.

构造一个表格,若学生,则在第行第列的格子中填1,否则填0.

由条件,知任取其中八个集合的并不是,即任取八列必有一行与其的交叉的格子均为0,称这种至少含八个“0”的行为“零行”.

再由条件任取九个集合的并是,则任意两个零行不是同一行.

于是,构成每8列到一行的单射,

.

另一方面,每行填30,任两行填的0的列不全相同,共种填法,而,故恰每行填一种方法.此时,恰满足题目.

综上,学生总人数最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】外接圆上三段弧的中点依次为,其关于的对称点依次为.若顶点与对应旁切圆切点的连线交于一点 (界心),的垂心证明:在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了120人进行调查,经统计男生与女生的人数比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

(1)完成列联表,并判断能否有99%的把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

30

15

合计

120

(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取8人,求抽取的男生和女生分别为多少人?若从这8人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:,其中n=a+b+c+d

P

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】l为曲线C在点处的切线.

1)求l的方程;

2)证明:除切点之外,曲线C在直线l的下方;

3)求证:(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在校园篮球赛中,甲、乙两个队10场比赛的得分数据整理成如图所示的茎叶图,下列说法正确的是(

A.乙队得分的中位数是38.5

B.甲、乙两队得分在分数段频率相等

C.乙队的平均得分比甲队的高

D.甲队得分的稳定性比乙队好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某知名电商在双十一购物狂欢节中成交额再创新高,日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和购物评价为满意的年龄层次频数分布表.年龄层次的频率分布直方图:

“购物评价为满意”的年龄层次频数分布表:

年龄(岁)

频数

1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);

2)若年龄在岁以下的称为青年买家,年龄在岁以上(含岁)的称为中年买家,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?

评价满意

评价不满意

合计

中年买家

青年买家

合计

附:参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件是随机事件的是(  )

x>10时,xRx2+x0有解

aR关于x的方程x2+a0在实数集内有解;sinα>sinβ时,α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正整数满足..对任意的其中,表示不超过实数的最大整数,表示集合中元素的个数.证明:

(1)

(2).

查看答案和解析>>

同步练习册答案