精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行

1)以小虫爬行时间为参数,写出射线的参数方程;

2)求小虫在曲线内部逗留的时间.

【答案】(1)该射线的参数方程为;(2)小虫在圆内逗留的时间为4min

【解析】

1)小虫爬行的距离为2t,其所在位置为,得到参数方程.

2)曲线C1的直角坐标方程为,根据韦达定理得到,计算得到答案.

1)因为直线的倾斜角为30°,经过时间t后,小虫爬行的距离为2t,其所在位置为

所以该射线的参数方程为

2)曲线C1的直角坐标方程为

将射线的参数方程带入曲线C1的方程,得

t1t2分别为小虫爬入和爬出的时间,则

逗留时间

所以小虫在圆内逗留的时间为4min

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACFE为平行四边形,设BDAC相交于点GABBDAE2,∠EAD=∠EAB

1)证明:平面ACFE⊥平面ABCD

2)若直线AEBC的夹角为60°,求直线EF与平面BED所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),解不等式

(2)若当时,关于的不等式恒成立,求的取值范围;

(3),若存在使不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为是椭圆上一点,轴,.

1)求椭圆的标准方程;

2)若直线与椭圆交于两点,线段的中点为为坐标原点,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若函数在定义域内是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的最大值

(2)在(1)成立的条件下,正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了庆祝中华人民共和国成立70周年,某公司举行大型抽奖活动,活动中准备了一枚质地均匀的正十二面体的骰子,在其十二个面上分别标有数字123,…,12,每位员工均有一次参与机会,并规定:若第一次抛得向上面的点数为完全平方数(即能写成整数的平方形式,如),则立即视为获得大奖;若第一次抛得向上面的点数不是完全平方数,则需进行第二次抛掷,两次抛得的点数和为完全平方数(如),也可视为获得大奖.否则,只能获得安慰奖.

1)试列举须抛掷两次才能获得大奖的所有可能情况(用表示前后两次抛得的点数),并说明所有可能情况的总数;

2)若获得大奖的奖金(单位:元)为抛得的点数或点数和(完全平方数)的360倍,而安慰奖的奖金为48元,该公司某位员工获得的奖金为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若的两个极值点,证明:.

查看答案和解析>>

同步练习册答案