【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组,,,,得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:
(1)估计全区高三学生中网上学习时间不超过40分钟的人数;
(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.
【答案】(1)225人;(2)
【解析】
(1)根据频率分布直方图,分别算出男生自主学习不超过40分钟的人数和女生自主学习不超过40分钟的人数求和即可.
(2)根据频率分布直方图可得选4名男生,2名女生,然后利用古典概型的概率求法,先列出任选2人的基本事件的数,再找出没有男生的基本事件数,最后用对立事件的概率求解.
(1)男生自主学习不超过40分钟的人数:人,
女生自主学习不超过40分钟的人数:人,
所以估计全区高三学生网上学习时间不超过40分钟的人数为225人.
(2)在80名学生中,男生网上学习不超过40分钟的人数:人,
女生网上学习不超过40分钟的人数:人,
所以选4名男生,2名女生.
4名男生设为,,,,2名女生设为,任选2人有:,,,,,,,,,,,,,,,共15种.
没有男生的有,共1种.
所以至少有一名男生的概率.
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.
(Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中,在直线.
(1)求数列{an}的通项公式;
(2)令,数列的前n项和为.
(ⅰ)求;
(ⅱ)是否存在整数λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,对任意的正整数,都有成立,记.
(1)求数列与数列的通项公式;
(2)记,设数列的前项和为,求证:对任意正整数,都有;
(3)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.在中,若,则
B.在锐角三角形中,不等式恒成立
C.在中,若,,则为等腰直角三角形
D.在中,若,,三角形面积,则三角形外接圆半径为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某测量人员为了测量西江北岸不能到达的两点,之间的距离,她在西江南岸找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;并测量得到数据:,,,,,百米.
(1)求的面积;
(2)求,之间的距离的平方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com