精英家教网 > 高中数学 > 题目详情
10.若$α∈(\frac{π}{2},π)$,且sinα=$\frac{3}{5}$,则cosα=$-\frac{4}{5}$.

分析 直接利用同角三角函数的基本关系式求解即可.

解答 解:$α∈(\frac{π}{2},π)$,且sinα=$\frac{3}{5}$,
则cosα=$-\sqrt{1-{sin}^{2}α}$=-$\frac{4}{5}$.
故答案为:-$\frac{4}{5}$.

点评 本题考查同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知全集U={1,2,3,4,5},集合M={1,2},N={x|x=n2,n∈M},则M∪(∁UN)={1,2,3,5}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an(n∈N+
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=$\frac{n+1}{(n+2)^{2}(10-{a}_{n})^{2}}$(n∈N+),数列{bn}的前n项和为Tn,证明:对于任意的n∈N+,都有Tn<$\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,且m$\overrightarrow{a}$-3$\overrightarrow{b}$与向量$\overrightarrow{a}$+(2-m)$\overrightarrow{b}$共线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的终边在如图所示的阴影区域内.
(1)用弧度制表示角α的集合;
(2)判定$\frac{α}{2}$+$\frac{7π}{12}$是第几象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosα=m,且|m|<1,求sinα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知⊙O′:x2+(y+$\frac{\sqrt{6}}{3}$m)2=4m2(m>0)及点M(0,$\frac{\sqrt{6}}{3}$m),在⊙O′上任取一点M′,连接MM′,并作MM′的中垂线l,设l与直线O′M′交于点P,若点M′取遍⊙O′上的点.
(1)求点P的轨迹C的方程.
(2)设直线l:y=k(x+1)(k≠0)与轨迹C相交于A,B两个不同的点,与x轴相交于点D,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,求△OAB的面积取得最大值时轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为$\sqrt{3}$,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知lgx-lg2y=1,则$\frac{x}{y}$的值为(  )
A.2B.5C.10D.20

查看答案和解析>>

同步练习册答案