精英家教网 > 高中数学 > 题目详情

【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.

(Ⅰ)估计这40名学生的测验成绩的中位数精确到0.1;

(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?

合格

优秀

合计

男生

16

女生

4

合计

40

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(Ⅰ) (Ⅱ)见解析

【解析】

(Ⅰ)根据频率分布直方图,找到矩形面积和为时横坐标的取值即为中位数;(Ⅱ)根据频率分布直方图计算频数可补足列联表,根据公式计算出,对比临界值表求得结果.

(Ⅰ)由频率分布直方图易知:

即分数在的频率为:

所以解得:

名学生的测验成绩的中位数为

(Ⅱ)由频率分布直方图,可得列联表如下:

合格

优秀

合计

男生

女生

合计

故没有的把握认为数学测验成绩与性别有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.

(1)若AB=,求CD的长;

(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是( )

A.得分在之间的共有40人

B.从这100名参赛者中随机选取1人,其得分在的概率为0.5

C.估计得分的众数为55

D.这100名参赛者得分的中位数为65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,过的直线相交于两点.

1)若,求的方程;

2)设过点轴的垂线交于另一点,若的外心,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点EF分别在,且..

1)当时,求异面直线所成角的大小;

2)当平面平面时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客户考察了一款热销的净水器,使用寿命为十年,改款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换个一级滤芯就需要更换个二级滤芯,三级滤芯无需更换.其中一级滤芯每个元,二级滤芯每个元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为.如图是根据台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.

(1)结合图,写出集合

(2)根据以上信息,求出一台净水器在使用期内更换二级滤芯的费用大于元的概率(以台净水器更换二级滤芯的频率代替台净水器更换二级滤芯发生的概率);

(3)若在购买净水器的同时购买滤芯,则滤芯可享受折优惠(使用过程中如需再购买无优惠).假设上述台净水器在购机的同时,每台均购买个一级滤芯、个二级滤芯作为备用滤芯(其中),计算这台净水器在使用期内购买滤芯所需总费用的平均数.并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为个,则其中一级滤芯和二级滤芯的个数应分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程及的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案