精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中,且的最小值为的图象的相邻两条对称轴之间的距离为的图象关于原点对称.

(1)求函数的解析式和单调递增区间;

(2)在中,角所对的边分别为,且,求.

【答案】1)f(x)=2sin(x+),递增区间为:;(2)

【解析】

(1)由题意可求f(x)的A和周期T,利用周期公式可求,利用正弦函数的对称性可求,可得f(x)的解析式和单调递增区间;

(2)由余弦定理,结合已知条件,求出B,代入f(x)化简求值即可.

(1)∵函数,其中,函数的最小值是-2,

∴A=2,∵的图象的相邻两条对称轴之间的距离为,∴T=,解得:.

又∵的图象关于原点对称, fx)的图象关于对称.

,解得:

又∵,解得:.可得:f(x)=2sin(x+).

因为x+

所以f(x)的递增区间为:.

(2)在中,满足

由余弦定理得

化简,所以=,且

= 2sin(+)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—5: 不等式选讲

已知函数f(x) 的定义域为R.

()求实数m的取值范围;

()m的最大值为n,当正数ab满足 n时,求7a4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时,若函数的两个极值点分别为,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数的值域为,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的直角坐标方程,并求时直线的普通方程;

(2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,,点是边上一点,且,点的中点,将沿着折起,使点运动到点处,且满足.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆)的左右两个焦点分别是在椭圆上运动.

1)若对有最大值为120°,求出的关系式;

2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线的交点在椭圆上,求点的坐标;

3)若设,在(2)成立的条件下,试求出两点间距离的函数,并求出的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1F2为双曲线b0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2

1)求双曲线C的方程;

2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1P2,求的值;

3)过圆O上任意一点Q作圆O的切线l交双曲线CAB两点,AB中点为M,求证:|AB|=2|OM|

查看答案和解析>>

同步练习册答案