精英家教网 > 高中数学 > 题目详情
16.甲、乙、丙三人投篮的水平都比较稳定,若三人各自独立地进行一次投篮测试,则甲投中而乙不投中的概率为$\frac{1}{4}$,乙投中而丙不投中的概率为$\frac{1}{12}$,甲、丙两人都投中的概率为$\frac{2}{9}$.
(1)分别求甲、乙、丙三人各自投篮一次投中的概率;
(2)若丙连续投篮5次,求恰有2次投中的概率;
(3)若丙连续投篮3次,每次投篮,投中得2分,未投中得0分,在3次投篮中,若有2次连续投中,而另外1次未投中,则额外加1分;若3次全投中,则额外加3分,记ξ为丙连续投篮3次后的总得分,求ξ的分布列和期望.

分析 (1)记甲、乙、丙三人各自独立地进行一次投篮测试投中的事件依次为A、B、C,由题设条件有:$P(A\overline{B})$=$\frac{1}{4}$,$P(B\overline{C})$=$\frac{1}{12}$,P(AC)=$\frac{2}{9}$,解出即可得出.
(2)丙连续投篮5次,恰有2次投中的概率为$P=C_5^2{(\frac{2}{3})^2}{(\frac{1}{3})^3}=\frac{40}{243}$,
(3)ξ可以取的值为0,2,4,5,9,可求得:$P(ξ=0)={(\frac{1}{3})^3}=\frac{1}{27}$,$P(ξ=2)=C_3^1\frac{2}{3}{(\frac{1}{3})^2}=\frac{2}{9}$,$P(ξ=4)={(\frac{2}{3})^2}\frac{1}{3}=\frac{4}{27}$,$P(ξ=5)=2{(\frac{2}{3})^2}\frac{1}{3}=\frac{8}{27}$,$P(ξ=9)={(\frac{2}{3})^3}=\frac{8}{27}$.可得ξ的分布列及其数学期望.

解答 解:(1)记甲、乙、丙三人各自独立地进行一次投篮测试投中的事件依次为A、B、C,由题设条件有:
$P(A\overline{B})$=$\frac{1}{4}$,$P(B\overline{C})$=$\frac{1}{12}$,P(AC)=$\frac{2}{9}$,即P(A)[1-P(B)]=$\frac{1}{4}$,①;P(B)[1-P(C)]=$\frac{1}{12}$,②P(A)P(C)=$\frac{2}{9}$,③.…(2分)
由①③得P(B)=1-$\frac{9}{8}$P(C),代入②得27P(C)]2-51P(C)+22=0.
解得P(C)=$\frac{2}{3}$或P(C)=$\frac{11}{9}$ (舍去).将P(C)=$\frac{2}{3}$分别代入②③可得P(A)=$\frac{1}{3}$,P(B)=$\frac{1}{4}$.
故甲、乙、丙三人各自投篮一次投中的概率分别是$\frac{1}{3}$,$\frac{1}{4}$,$\frac{2}{3}$…(5分)
(2)丙连续投篮5次,恰有2次投中的概率为$P=C_5^2{(\frac{2}{3})^2}{(\frac{1}{3})^3}=\frac{40}{243}$;…(7分)
(3)ξ可以取的值为0,2,4,5,9,可求得:$P(ξ=0)={(\frac{1}{3})^3}=\frac{1}{27}$,$P(ξ=2)=C_3^1\frac{2}{3}{(\frac{1}{3})^2}=\frac{2}{9}$,$P(ξ=4)={(\frac{2}{3})^2}\frac{1}{3}=\frac{4}{27}$,$P(ξ=5)=2{(\frac{2}{3})^2}\frac{1}{3}=\frac{8}{27}$,$P(ξ=9)={(\frac{2}{3})^3}=\frac{8}{27}$.
∴ξ的分布列为:

ξ02459
p$\frac{1}{27}$$\frac{2}{9}$$\frac{4}{27}$$\frac{8}{27}$$\frac{8}{27}$
∴ξ期望为Eξ=0+$2×\frac{2}{9}+4×\frac{4}{27}$+5×$\frac{8}{27}$+9×$\frac{8}{27}$=$\frac{140}{27}$…(12分)

点评 本题考查了相互独立、互斥事件的概率计算公式及其数学期望,考查推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{\sqrt{2}}{2}$,右焦点为F(c,0)到直线x=$\frac{{a}^{2}}{c}$的距离为1
(Ⅰ)求椭圆C的方程
(Ⅱ)不经过坐标原点O的直线l与椭圆C交于A,B两点,且线段AB中点在直线y=$\frac{1}{2}$x上,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图是如图所示的直角三角形、半圆和等腰三角形,各边的长度如图所示,则此几何体的体积是16π,表面积是$24+(8+4\sqrt{13})π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥中P-ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某学校为了调查大声朗读对学生的记忆是否有明显的促进作用,把200名经常大声朗读的学生与另外200名经常不大声朗读的学生的日常记忆情况作记载后进行比较,提出假设H0:“经常大声朗读对记忆没有明显的促进作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.根据比较结果,学校作出了以下的四个判断:
p:有95%的把握认为“经常大声朗读对记忆有明显的促进作用”;
q:若某学生经常大声朗读,那么他有95%的可能记忆力很好;
r:经常大声朗读的学生中,有95%的学生的记忆有明显的促进;
s:经常大声朗读的学生中,只有5%的学生的记忆有明显的促进.
则下列结论中,正确结论的序号是①④.(把你认为正确的命题序号都填上)
①p∧非q ②非p∧q  ③(非p∧非q)∧(r∨s) ④(p∨非r)∧(非q∨s)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线$x-\sqrt{3}y-2=0$的倾斜角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设直线l1:kx-y+1=0,l2:x-ky+1=0,若l1∥l2,则k=(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由计算机产生2n个0~1之间的均匀随机数x1,x2,…xn,y1,y2,…yn,构成n个数对(x1,y1),(x2y2),…(xn,yn)其中两数能与1构成钝角三角形三边的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为$\frac{4m}{n}+2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若集合A={x||x-1|<2,x∈R},则A∩Z={0,1,2}.

查看答案和解析>>

同步练习册答案