精英家教网 > 高中数学 > 题目详情

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

【答案】

【解析】如下图,连接DOBC于点G,设DEF重合于S点,正三角形的边长为x(x>0),则 .

三棱锥的体积 .

x>0,则

,即,得,易知处取得最大值.

.

点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017四川宜宾二诊】如甲图所示,在矩形中, 的中点,将沿折起到位置,使平面平面,得到乙图所示的四棱锥

求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x1 , y1),B(x2 , y2)是函数f(x)= 的图象上的任意两点(可以重合),点M在直线x= 上,且 =
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f( )+f( )+f( )+…+f( ),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数f(x)=sin(2x+φ)(|φ|< )的图象上的所有点向左平移 个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则(
A.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=g(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(4,3), =(2,﹣1),O为坐标原点,P是直线AB上一点.
(1)若点P是线段AB的中点,求向量 与向量 夹角θ的余弦值;
(2)若点P在线段AB的延长线上,且| |= | |,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,则该数列的前10项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

同步练习册答案