精英家教网 > 高中数学 > 题目详情

 已知向量

(1)设;(2)若垂直,求的值.

 

【答案】

 (1); (2)

【解析】本试题主要考查了向量的数量积的运算和向量垂直的运用。

(1)利用向量的坐标可知

那么利用向量的数量积得到结论

(2)根据垂直,则数量积为零,那么可知解得 。

解:由题可知

   (1)    所以

   (2)

      

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1)
,向量
n
与向量
m
夹角为
3
4
π
,且
m
n
=-1

(1)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C为△ABC的内角,且A,B,C依次成等差数列,试求|
n
+
p
|的取值范围.
(2)若A、B、C为△ABC的内角,且A,B,C依次成等差数列,A≤B≤C,设f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值为5-2
2
,关于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相异实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,sin(ωx+
π
3
))
n
=(2,2sin(ωx-
π
6
))
(其中ω为正常数)
(Ⅰ)若ω=1,x∈[
π
6
3
]
,求
m
n
时tanx的值;
(Ⅱ)设f(x)=
m
n
-2,若函数f(x)的图象的相邻两个对称中心的距离为
π
2
,求f(x)在区间[0,
π
2
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点为P(
π
12
,2)
,与P最近的一个最低点的坐标为(
12
,-2)

(1)求函数f(x)的解析式;
(2)设a为常数,判断方程f(x)=a在区间[0,
π
2
]
上的解的个数;
(3)在锐角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知向量
a
=(1,
3
)
a
+
b
=(0, 
3
)
,设
a
b
的夹角为θ,则θ=
120°
120°

查看答案和解析>>

同步练习册答案