精英家教网 > 高中数学 > 题目详情
17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示为$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示为$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),则λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

分析 先得到$\overrightarrow{a}=(λ+μ)\overrightarrow{{e}_{1}}+(λ-μ)\overrightarrow{{e}_{2}}$,而$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$为基底,从而由平面向量基本定理便可得到$\left\{\begin{array}{l}{λ+μ=2}\\{λ-μ=3}\end{array}\right.$,解该方程组便可得出λ,μ.

解答 解:$\overrightarrow{a}=λ(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})+μ(\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})$=$(λ+μ)\overrightarrow{{e}_{1}}+(λ-μ)\overrightarrow{{e}_{2}}$;
又$\overrightarrow{a}=2\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}}$;
∴根据平面向量得:$\left\{\begin{array}{l}{λ+μ=2}\\{λ-μ=3}\end{array}\right.$;
∴$λ=\frac{5}{2},μ=-\frac{1}{2}$.
故答案为:$\frac{5}{2},-\frac{1}{2}$.

点评 考查向量基底的概念,向量加法及数乘运算,以及平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设a,b是正实数,且a+b=1,记$x=ab,\;y=({a+\frac{1}{a}})({b+\frac{1}{b}})$.
(1)求y关于x的函数关系式f(x),并求其定义域I;
(2)若函数g(x)=$\sqrt{k•f(x)-1}$在区间I内有意义,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=2x+4y的最大值为(  )
A.5B.-38C.10D.38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC,角A,B,C的对边分别为a,b,c且a2-c2=b(a-b)且c=$\sqrt{6}$
(1)求角C;   
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.讨论函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≥1}\\{3-x}&{x<1}\end{array}\right.$在点x=1处的连续性,并画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四边形ABCD中,AD=DC,∠BAC=10°,∠ABD=50°,∠ACD=20°,求∠CBD的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$,g(x)=$\frac{\sqrt{2x+1}}{x-1}$,则f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{x+2}$+$\frac{1}{3-x}$的定义域为{x|x≥-2且x≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(a)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,则f(-$\frac{25π}{3}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案