【题目】已知椭圆:的离心率为,且点在椭圆上.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆交于,两点,在直线上存在点,使三角形为正三角形,求的最大值.
【答案】(1);(2).
【解析】
(1)由离心率得,再把已知点的坐标代入椭圆方程,结合可解得,得椭圆方程;
(2)设直线方程为,与联立方程组,消去,设,,由韦达定理得.设线段的中点为,得直线方程,求出点坐标(此结论对也适用),是等边三角形等价于,由此可把用表示,设换元后,可利用基本不等式求得最值.
(1)设,则,,所以,,
由点在椭圆上得,
,,所以椭圆的方程为.
(2)显然,直线的斜率存在,设其方程为,
与联立方程组,消去,并化简得.
设,,则,.
设线段的中点为,则直线:,令,
又,得点的坐标为,显然当时也符合,
所以.
又因为,
由三角形为正三角形得,
所以两边平方可得
,得.
令,则,当且仅当,即时等号成立,此时,所以的最大值为.
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系.
(1)求曲线与曲线的公共点的极坐标;
(2)若点的极坐标为,设曲线与轴相交于点,则在曲线上是否存在点,使得,若存在,求出点的直角坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研团队对例新冠肺炎确诊患者的临床特征进行了回顾性分析.其中名吸烟患者中,重症人数为人,重症比例约为;名非吸烟患者中,重症人数为人,重症比例为.
(1)根据以上数据完成列联表;
(2)根据(1)中列联表数据,能否在犯错误的概率不超过的前提下认为新冠肺炎重症与吸烟有关?
(3)已知每例重症患者平均治疗费用约为万元,每例轻症患者平均治疗费用约为万元.根据(1)中列联表数据,分别求吸烟患者和非吸烟患者的平均治疗费用.(结果保留两位小数)
附:
≥ | |||
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,有下列四个结论:
①AP与CM是异面直线;②AP,CM,DD1相交于一点;③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正确结论的编号是( )
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为4的正方形,为中点,为边上一动点,现将,分别沿,折起,使得,重合为点,形成四棱锥,过点作平面于.①平面平面;②当为中点时,三棱锥的体积为;③为的垂心;④长的取值范围为 .则以上判断正确的有______(填正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某晚会上某歌舞节目的表演者是3个女孩和4个男孩.演出结束后,7个人合影留念(3个人站在前排,4个人站在后排),其中男孩甲、乙要求站在一起,女孩丙不能站在两边,不同站法的种数为( )
A.96B.240C.288D.432
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com