精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)讨论的单调性;

2)若对任意,都有恒成立,求的取值范围.

【答案】1)答案不唯一,见解析;(2

【解析】

1)对函数进行求导,根据的不同取值,利用一次等式和二次不等式的解集性质进行分类讨论即可;

2)根据的不同取值,分类讨论求出函数的最小值进行求解即可.

1的定义域为

①当时,,∴上单调递减,在上单调递增;

②当时,

上单调递增,在上单调递减;

③当时,,∴上单调递增;

④当时,,∴上单调递增,在上单调递减;

⑤当时,,∴上单调递增,在上单调递减.

2)由(1)知,①当时,上的最小值为

∴只要,得,解得

②当时,上的最小值为

,即恒成立,得

③当时,上单调递减,又,∴不成立,

所以满足条件的的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是正方形,是正三角形, .

(1)求证:平面

(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面分别为上的点,且.

1)求证:

2)若,直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的单调区间;

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,海南等8省公布了高考改革综合方案将采取模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.

1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;

2)试根据茎叶图分析甲同学的物理和历史哪一学科成绩更稳定.(不需计算)

3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.(计算时精确到0.01

(分)

57

61

65

72

74

77

84

(分)

76

82

82

85

87

90

93

参考数据:.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面为矩形,平面,为棱的中点,求证:

(1)平面

(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)设点,若直线与曲线相交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为

(1)求椭圆的标准方程;

(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.

查看答案和解析>>

同步练习册答案