精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),设f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表达式;
(3)数列{bn}满足b1=1,bn+1=2f(n)-1,它的前n项和为g(n),求证:当n∈N*时,g(2n)-
n
2
≥1.
分析:(1)直接利用数列{an}的通项公式为an=
1
(n+1)2
(n∈N*),分别令n=1,2,3,4.即可求得f(1)、f(2)、f(3)、f(4)的值;
(2)由f(n)=(1-a1)(1-a2)…(1-an)得:f(n-1)=(1-a1)(1-a2)…(1-an-1)(n>1),两式相除得:
即可得出f(n)的表达式;
(3)先利用题中条件得出g(2n)=1+
1
2
+
1
3
+…+
1
2n
.再设∅(n)=f(2n)-
n
2
,研究它的单调性,即数列{∅(n)}是单调递增数列,从而求得其最小值为∅(1),从而得到∅(n)≥1即得g(2n)-
n
2
≥1.
解答:解:(1)f(1)=
3
4
,f(2)=
2
3
,f(3)=
5
8
,f(4)=
3
5

(2)由f(n)=(1-a1)(1-a2)…(1-an
得:f(n-1)=(1-a1)(1-a2)…(1-an-1)(n>1),
两式相除得:
f(n)
f(n-1)
=1-an=1-
1
(n+1)2
=
n(n+2)
(n+1)2
(n>1).
f(n)
f(n-1)
f(n-1)
f(n-2)
f(2)
f(1)
=
n(n+2)
(n+1)2
(n-1)(n+1)
n2
n(n-2)
(n-1)2
2×4
32

f(n)
f(1)
=
n(n-1)(n-2)…2
(n+1)n…3
(n+2)(n+1)…4
(n+1)n…3
=
2
n+1
n+2
3

∴f(n)=
n+2
2(n+1)
(n>1),又f(1)=
3
4
适合此式,
∴f(n)=
n+2
2(n+1)

(3)b n+1=2f(n)-1=
1
n+1

g(n)=1+
1
2
+
1
3
+…+
1
n

∴g(2n)=1+
1
2
+
1
3
+…+
1
2n

设∅(n)=f(2n)-
n
2

则∅(n)=1+
1
2
+
1
3
+…+
1
2n
-
n
2

∅(n+1)-∅(n)=1+
1
2
+
1
3
+…+
1
2n+1
-
n+1
2
-(1+
1
2
+
1
3
+…+
1
2n
-
n
2

=
1
2n+1
+
1
2n+2
+…+
1
2n+1
-
1
2

1
2n+1
+
1
2n+2
+…+
1
2n+1
的项数为2n
1
2n+1
+
1
2n+2
+…+
1
2n+1
1
2n+1
+
1
2n+1
+…+
1
2n+1
=
1
2n+1
×2n
=
1
2

∴∅(n+1)-∅(n)>0.即数列{∅(n)}是单调递增数列.
其最小值为∅(1)=g(2)-
1
2
=1
∴∅(n)≥1即g(2n)-
n
2
≥1.
点评:本小题主要考查函数单调性的应用、数列的函数特性、数列的求和、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记bn=(2n+1)•(
1Sn
+2)
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记数学公式,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为______.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高一(上)期末数学试卷(解析版) 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为   

查看答案和解析>>

同步练习册答案