精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)在(2)的条件下,求证.

(参考知识:若,则有

【答案】1增区间为,单调减区间为.(2).3见解析

【解析】试题分析:(1)当,求出,由 可得增区间,由可得减区间;(2)求出函数的导数,由,得到函数的单调区间,根据函数的单调性可得,从而确定的范围;(3)由题意得,根据不等式的性质,利用分析法可以证明.

试题解析:1时, ,解得

∴函数的单调递增区间为,单调减区间为.

(2),依题意可知,此时

上单调递减,在上单调递增,又时,

的图象与轴交于两点,

当且仅当

.

的取值范围为.

3)由题意得

欲证即证即证

.

,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点 且离心率为
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求区间A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.令.

(1)求的通项公式;

(2)若,且数列的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以T=4为周期的函数f(x)= ,其中m>0.若方程3f(x)=x恰有5个实数解,则m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且满足 为常数.

1是否存在数列,使得?若存在,写出一个满足要求的数列;若不存在,说明理由.

2)当时,求证:

3)当时,求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面 上一点

(1)证明: 平面

,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,将曲线 (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1 . 以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线C2的方程为ρ=4sinθ,求C1和C2公共弦的长度.

查看答案和解析>>

同步练习册答案