【题目】设函数.
(1)当时,求的单调区间;
(2)若的图象与轴交于两点,起,求的取值范围;
(3)在(2)的条件下,求证.
(参考知识:若,则有)
科目:高中数学 来源: 题型:
【题目】椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点 且离心率为 .
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求区间A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,且满足, 为常数.
(1)是否存在数列,使得?若存在,写出一个满足要求的数列;若不存在,说明理由.
(2)当时,求证: .
(3)当时,求证:当时, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,将曲线 (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1 . 以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线C2的方程为ρ=4sinθ,求C1和C2公共弦的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com