精英家教网 > 高中数学 > 题目详情

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:

分组(岁)

频数

合计

(1)求频率分布表中的值,并补全频率分布直方图;

(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.

【答案】(1),图标间解析;(2)详见解析.

【解析】试题分析:(1)利用频率分布直方图的性质即可得出.
(2)各层之间的比为5:20:35:30:10=1:4:7:6:2,且共抽取20人,可得年龄在[35,40)内层抽取的人数为7人.X可取0,1,2,P(X=k)=,即可得出.

试题解析:

由图知, ,故

.

(2)各层之间的比为,且共抽取人,

年龄在内层抽取的人数为人.

可取

,故的分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),四点 中恰有三点在椭圆上.

1的方程;

2设直线不经过点且与相交于两点,若直线与直线的斜率之和为证明: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为, 已知,且 三个数依次成等差数列.

(Ⅰ)求的值;

(Ⅱ)求数列的通项公式;

(Ⅲ)若数列满足,设是其前项和,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线的方程:
(1)经过两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0;
(2)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若任意,不等式恒成立,求实数的取值范围;

(2)求证:对任意 ,都有成立;

(3)对于给定的正数,有一个最大的正数,使得整个区间上,不等式恒成立,求出的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点,记直线的斜率为.

(Ⅰ)求的值;

(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)当时,判断函数的零点个数;

(Ⅱ)若,求的最大值.

查看答案和解析>>

同步练习册答案