【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数, ),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(Ⅰ)讨论直线与圆的公共点个数;
(Ⅱ)过极点作直线的垂线,垂足为,求点的轨迹与圆相交所得弦长.
科目:高中数学 来源: 题型:
【题目】设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若直线l不经过第二象限,求实数a的取值范围;
(Ⅱ)若直线l与两坐标轴围成的三角形面积等于2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为4的正方形的边上有一点沿着折线由点(起点)向点(终点)运动。设点运动的路程为,的面积为,且与之间的函数关系式用如图所示的程序框图给出.
(1)写出框图中①、②、③处应填充的式子;
(2)若输出的面积值为6,则路程的值为多少?并指出此时点在正方形的什么位置上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 ,
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四凌锥S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.
(1)求证:DM∥平面SAB;
(2)求四棱锥S﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,an=32,sn=63,
(1)若数列{an}为公差为11的等差数列,求a1;
(2)若数列{an}为以a1=1为首项的等比数列,求数列{am2}的前m项和sm′ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com