精英家教网 > 高中数学 > 题目详情

【题目】已知m∈R,函数f(x)= ,g(x)=x2﹣2x+2m2﹣1,若函数y=f(g(x))﹣m有6个零点则实数m的取值范围是

【答案】
【解析】解:函数f(x)= 的图象如图所示,

令g(x)=t,y=f(t)与y=m的图象最多有3个零点,

当有3个零点,则0<m<3,从左到右交点的横坐标依次t1<t2<t3

由于函数y=f(g(x))﹣m有6个零点,t=x2﹣2x+2m2﹣1,

则每一个t的值对应2个x的值,则t的值不能取最小值,

函数t=x2﹣2x+2m2﹣1的对称轴x=1,则t的最小值为1﹣2+2m2﹣1=2m2﹣2,

由图可知,2t1+1=﹣m,则

由于t1是交点横坐标中最小的,满足 >2m2﹣2①,

又0<m<3②,

联立①②得0<m<

∴实数m的取值范围是(0, ).

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中 x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆O:x2+y2=1,O1:(x﹣4)2+y2=4,动点P在直线x+ y+b=0上,过P分别作圆O,O1的切线,切点分别为A,B,若满足PB=2PA的点P有且只有两个,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x+1)的定义域为[﹣2,3],则f(3﹣2x)的定义域为(
A.[﹣5,5]
B.[﹣1,9]
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?

非读书迷

读书迷

合计

15

45

合计


(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组 ,表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D上的点,则r的取值范围是(
A.[2 ,2 ]
B.(2 ,3 ]??
C.(3 ,2 ]
D.(0,2 )∪(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x( + ),
(1)试判断f(x)的奇偶性,
(2)求证f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2x﹣y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x﹣4y=0相切,则实数λ的值为(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(k﹣2)x2+2kx﹣3. (Ⅰ)当k=4时,求f(x)在区间(﹣4,1)上的值域;
(Ⅱ)若函数f(x)在(0,+∞)上至少有一个零点,求实数k的取值范围;
(Ⅲ)若f(x)在区间[1,2]上单调递增,求实数k的取值范围.

查看答案和解析>>

同步练习册答案