精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,底面是边长为4的等边三角形,的中点.

1)证明:平面.

2)若是等边三角形,求二面角的正弦值.

【答案】1)证明见解析,(2

【解析】

1)根据等腰三角形三线合一证明即可得证;

2)建立空间直角坐标系,利用向量求解二面角.

1)证明:连接.

因为,所以,所以.

因为的中点,所以.

因为的中点,且,所以.

因为,所以平面.

2)解:取的中点,连接,因为是等边三角形,所以.

由(1)可知平面,则两两垂直,故以为原点,所在直线为轴,过的平行线为轴,所在直线为轴建立空间直角坐标系.

因为底面是边长为4的等边三角形,所以.

因为是等边三角形,所以.

所以,则.

设平面的法向量

,令,得.

易知平面的一个法向量为

记二面角,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若函数仅在处取得极值,求实数的取值范围;

(2)若函数有三个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面定义一个同学数学成绩优秀的标志为:“连续次考试成绩均不低于分”.现有甲、乙、丙三位同学连续次数学考试成绩的记录数据(记录数据都是正整数):

①甲同学:个数据的中位数为,众数为

②乙同学:个数据的中位数为,总体均值为

③丙同学:个数据的中位数为,总体均值为,总体方差为

则可以判定数学成绩优秀同学为()

A. 甲、丙B. 乙、丙C. 甲、乙D. 甲、乙、丙

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形边长为若在正方形边上恰有个不同的点,使,则的取值范围为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线的两个焦点,点在双曲线上,且,则的面积为________;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;

方案2:连猜三道“生活”类试题.

设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.

(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.

(2)职工甲选择哪一种方案所得平均分高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆上的动点到一个焦点的最远距离与最近距离分别是的左顶点为轴平行的直线与椭圆交于两点,过两点且分别与直线垂直的直线相交于点.

1)求椭圆的标准方程;

2)证明点在一条定直线上运动,并求出该直线的方程;

3)求面积的最大值.

查看答案和解析>>

同步练习册答案