精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=k(x+1)2-x,g(x)=lg(x+k)(k∈R).
(1)若f(1)=23,求函数g(x)在区间(4,+∞)上的值域;
(2)当0<g(1)≤1时,函数f(x)在区间[0,2]上的最小值大于h(x)=$\frac{1}{{tan}^{2}x}$+$\frac{4}{{cos}^{2}x}$在(0,$\frac{π}{4}$]上的最小值,求实数k的取值范围.

分析 (1)由f(1)=23,求得k=6,再由对数函数的单调性,可得g(x)的值域;
(2)由0<g(1)≤1时,求得k的范围,再由函数f(x)在区间[0,2]上的最小值可能是顶点处或端点处取得,求得k的范围,再由同角的基本关系式,结合基本不等式,可得g(x)的最小值为8,再解不等式即可得到所求k的范围.

解答 解:(1)f(1)=23,即为4k-1=23,解得k=6,
g(x)=lg(x+6),
由g(x)在(4,+∞)上递增,即有g(x)>1,
则g(x)的值域为(1,+∞);
(2)当0<g(1)≤1,即为0<lg(1+k)≤1,
可得0<k≤9,
函数f(x)=k(x+1)2-x=kx2+(2k-1)x+k,
对称轴为x=-1+$\frac{1}{2k}$,
即有f(x)的最小值只能在对称轴或两端点处取得.
若f(0)=k为最小值,即有[0,2]递增,即-1+$\frac{1}{2k}$≤0,
解得$\frac{1}{2}$≤k≤9;
若f(2)=9k-2为最小值,即有[0,2]递减,即-1+$\frac{1}{2k}$≥2,
解得0<k≤$\frac{1}{6}$;
若对称轴处取得最小值1-$\frac{1}{4k}$,即有0<-1+$\frac{1}{2k}$<2,
解得$\frac{1}{6}$<k<$\frac{1}{2}$.
h(x)=$\frac{1}{{tan}^{2}x}$+$\frac{4}{{cos}^{2}x}$=$\frac{co{s}^{2}x}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$=$\frac{1}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$-1
=(sin2x+cos2x)($\frac{1}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$)-1
=4+$\frac{co{s}^{2}x}{si{n}^{2}x}$+$\frac{4si{n}^{2}x}{co{s}^{2}x}$≥4+2$\sqrt{\frac{co{s}^{2}x}{si{n}^{2}x}•\frac{4si{n}^{2}x}{co{s}^{2}x}}$=8,
当且仅当$\frac{co{s}^{2}x}{si{n}^{2}x}$=$\frac{4si{n}^{2}x}{co{s}^{2}x}$,即有tanx=$\frac{\sqrt{2}}{2}$∈(0,1],取得最小值8.
(由0<x≤$\frac{π}{4}$,可得0<tanx≤1),
由题意可得当$\frac{1}{2}$≤k≤9,且k>8,即有8<k≤9;
当0<k≤$\frac{1}{6}$,且9k-2>8,即有k∈∅;
当$\frac{1}{6}$<k<$\frac{1}{2}$时,且1-$\frac{1}{4k}$>8,解得k∈∅.
综上可得k的范围是(8,9].

点评 本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查三角函数的最值求法,注意运用平方关系和基本不等式,同时考查对数函数的单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=1+log2x(1≤x≤4),求函数g(x)=f2(x)+f(x2)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入-前n年的总支出-投资额).
(Ⅰ)该厂从第几年开始盈利?(盈利指的是纯利润总和要大于0)
(Ⅱ)该投资商计划在年平均纯利润达到最大时,以48万元出售该厂.问:需多少年后其年平均纯利润才可达到最大,此时共获利多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:log3$\frac{\root{4}{27}}{3}$+lg25+lg4+${log_7}{7^2}$+log23•log34;
(2)设集合A={x|$\frac{1}{32}$≤2-x≤4},B={x|m-1<x<2m+1}.若A∪B=A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上两个相异的、不关于坐标轴对称的点.求线段AB的中垂线在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={(x,y)|x-y+4≥0},B={(x,y)|y≥x(x-2)},则集合A∩B的所有元素组成的图形的面积是(  )
A.$\frac{43}{2}$B.$\frac{55}{2}$C.$\frac{125}{6}$D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四棱锥P-ABCD的底面ABCD为平行四边形,M为线段PC上的点,且满足CM=$\frac{1}{2}$MP.若$\overrightarrow{CM}$=-$\frac{1}{3}$$\overrightarrow{AB}$+m$\overrightarrow{AD}$+n$\overrightarrow{AP}$,则m+n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校阅览室订有甲,乙两类杂志,据调查,该校学生中有70%阅读甲杂志,有45%阅读乙杂志,有22%兼读甲,乙两类杂志.求学生中至少读其中一类杂志的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.光线从A(-3,4)点射出,到x轴上的B点后,被x轴反射,这时反射光线恰好过点C(1,6),则BC所在直线的方程为(  )
A.5x-2y+7=0B.2x-5y+7=0C.5x+2y-7=0D.2x+5y-7=0

查看答案和解析>>

同步练习册答案