精英家教网 > 高中数学 > 题目详情
15.已知圆O:x2+y2=1与直线l:ax+by+2=0相切,则动点P(2a,3b)在直角坐标平面xoy内的轨迹方程为$\frac{x^2}{16}+\frac{y^2}{36}=1$.

分析 利用已知条件列出方程化简求解即可.

解答 解:圆O:x2+y2=1与直线l:ax+by+2=0相切,
可得:$\frac{|2|}{\sqrt{{a}^{2}+{b}^{2}}}=1$,即a2+b2=4,
动点P(2a,3b)设为(x,y),则a=$\frac{x}{2}$,b=$\frac{y}{3}$,代入a2+b2=4,
可得:$\frac{x^2}{16}+\frac{y^2}{36}=1$.
故答案为:$\frac{x^2}{16}+\frac{y^2}{36}=1$.

点评 本题考查轨迹方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.一个四面体的三视图如图所示,则该四面体的外接球的表面积为(  )
A.$\frac{4π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,点A在边PB上,AD∥BC,PB=3BC=6,现沿AD将△PAD折起,使平面PAD⊥平面ABCD.
(Ⅰ)当CD=BC时,证明:直线BD⊥平面PAC;
(Ⅱ)当三棱锥P-ABD的体积取得最大值时,求平面PBD与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,x2-2x-1≥0,则¬p是(  )
A.?x∈R,x2-2x-1≥0B.?x∈R,x2-2x-1<0C.?x∈R,x2-2x-1<0D.?x∈R,x2-2x-1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x•cosx,则$f'({\frac{π}{2}})$的值为(  )
A.$-\frac{π}{2}$B.$\frac{π}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x|+$\frac{m}{x}$-2(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)若f(2x)>0对x∈R恒成立,求m的取值范围;
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,正六边形ABCDEF中,$\overrightarrow{BC}$$+\overrightarrow{DE}$$+\overrightarrow{AF}$等于(  )
A.$\overrightarrow{EB}$B.$\overrightarrow{BE}$C.$\overrightarrow{AD}$D.$\overrightarrow{CF}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x、y满足约束条件$\left\{\begin{array}{l}{y≤x}&{\;}\\{x+y≥2}&{\;}\\{y≥3x-6}&{\;}\end{array}\right.$,则目标函数Z=4x+y+3的最小值为(  )
A.5B.8C.11D.18

查看答案和解析>>

同步练习册答案