精英家教网 > 高中数学 > 题目详情
1.圆${C_1}:{({x-1})^2}+{y^2}=1$与圆${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置关系是(  )
A.内切B.外切C.相交D.相离

分析 根据两圆的圆心距大于两圆的半径之和,可得两圆的位置关系.

解答 解:由题意可得,两圆的圆心距C1C2=$\sqrt{(1+3)^{2}+(0-2)^{2}}$=2$\sqrt{5}$>1+2,即两圆的圆心距大于两圆的半径之和,
故两圆相离,
故选:D.

点评 本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$acosC+\sqrt{3}asinC-b-c=0$.
(1)求角A的大小;
(2)若a=7,b+c=11,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x-1)(2x-$\frac{1}{x}$)5的二项展开式中常数项为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=alnx-bx2(x>0),若函数y=f(x)在x=1处与直线y=-1相切.
(Ⅰ) 求实数a,b的值;
(Ⅱ) 求函数y=f(x)在$[{\frac{1}{e},e}]$上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)到F1、F2两点的距离之和等于6,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点K是(1)中所得椭圆上的动点,求线段F1K的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于$\frac{S}{3}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b>0,c>1,则(  )
A.logac>logbcB.logca>logcbC.ac<bcD.ca<cb

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:m2+2m-15≤0成立.命题q:方程x2-4mx+1=0有实数根.若p为真命题,q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下面四个命题(其中m,n,l为空间中不同的直线,α,β是空间中不同的平面)中正确的命题为(  )
A.m∥n,n∥α⇒m∥αB.α⊥β,α∩β=m,l⊥m⇒l⊥β
C.l⊥m,l⊥n,m?α,n?α⇒l⊥αD.m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β

查看答案和解析>>

同步练习册答案