精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在点处的切线方程为

(1)求函数的解析式;

(2)若过点),可作曲线的三条切线,求实数的取值范围;

(3)若对于区间上任意两个自变量的值,都有,求实数的最小值.

【答案】(1);(2);(3)4.

【解析】试题分析:(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可;
(2)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解;
(3)由题意,对于定义域内任意自变量都使得|f(x1)-f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解.

试题解析:

(1)

根据题意,得解得

(2)∵点不在曲线上,∴设切点为.则

,∴切线的斜率为

,即

因为过点,可作曲线的三条切线,

所以方程有三个不同的实数解.

即函数有三个不同的零点.

..令,解得

0

2

+

0

-

0

+

极大值

极小值

解得.

(3)令,即,解得

-2

-1

1

2

+

0

-

0

+

-2

极大值

极小值

0

,∴当时,

则对于区间上任意两个自变量的值,都有

,所以

所以的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,正方形所在的平面与正三角形所在的平面互相垂直, ,且 的中点.

1)求证: 平面

2)求面与面所成锐二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{ }的公差为1的等差数列,且a2=3,a3=5.
(1)求数列{an}的通项公式;
(2)设bn=an3n , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点轴上,离心率为,在椭圆上有一动点的距离之和为4,

(Ⅰ) 求椭圆E的方程;

(Ⅱ) 过作一个平行四边形,使顶点都在椭圆上,如图所示.判断四边形能否为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点轴上,离心率为,在椭圆上有一动点的距离之和为4,

(Ⅰ) 求椭圆E的方程;

(Ⅱ) 过作一个平行四边形,使顶点都在椭圆上,如图所示.判断四边形能否为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex﹣ae2x(a∈R)恰有两个极值点x1 , x2(x1<x2),则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为 ,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

(2)已知,经过原点,且斜率为正数的直线与圆交于两点.

(ⅰ)求证: 为定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=
(Ⅰ)求A的大小;
(Ⅱ)若b+c=5,a= ,求△ABC的面积的大小.

查看答案和解析>>

同步练习册答案