精英家教网 > 高中数学 > 题目详情
4.已知m、n是两条不重合的直线,α、β是两个不重合的平面,给出下列命题;①若m?α,n?β,m∥n,则α∥β;②若m、n是异面直线,m∥β,n?β,n∥α,则α∥β.其中(  )
A.①②都是真命题B.①②都是假命题
C.①是真命题,②是假命题.D.①是假命题,②是真命题.

分析 ①根据面面平行的判定定理进行判断即可.
②根据面面平行的判定定理进行判断即可.

解答 解:①如图:m?α,n?β,m∥n,则α∥β或相交,故①错误;
②若m、n是异面直线,m∥β,n?β,n∥α,则α∥β,正确,
故选:D.

点评 本题主要考查空间直线和平面位置关系的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图所示,已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB的直线l将△ABC分成两部分,求此两部分面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线以两坐标轴为对称轴,点($\frac{16}{5}$,$\frac{12}{5}$)是其准线和渐近线的交点,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x(x-m)2+1(m∈R)在x=1处有极大值.
(1)求m的值;
(2)求f(x)在区间[$\frac{1}{2}$,5]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个顶点分别是A(0,1),B(3,0),C(5,2),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C:y=4ax3+x,过点Q(0,-1)作C的切线l,切点为P.
(1)求证:不论a怎样变化.点P总-在一条定直线上;
(2)若a>0,过点P且与1垂直的直线与x轴交于点T,求OT的最小值(0为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,已知点O、A、B、C分别表示复数0,1+i,2+3i,3+2i,点P(x,y)在三边围成的区域(含边界)上.
(Ⅰ)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求|$\overrightarrow{OP}$|;
(Ⅱ)设$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.单位正方体ABCD-A1B1C1O在空间直角坐标系中的位置如图所示,动点M(a,a,0),N(0,b,1),其中0≤a≤1,0≤b≤1.设由M,N,O三点确定的平面截该正方体的截面为E,那么(  )
A.对任意点M,存在点N使截面E为三角形
B.对任意点M,存在点N使截面E为正方形
C.对任意点M和N,截面E都是梯形
D.对任意点N,存在点M使得截面E为矩形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知U={1,2,3,4,5}为全集,它的子集A={2,4},B={2,4,5}.求:
(1)(∁UA)∪B;
(2)(∁UB)∩A.

查看答案和解析>>

同步练习册答案