精英家教网 > 高中数学 > 题目详情
如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知

①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;
③EG与FH互为异面直线;④EG与AB互为异面直线.
其中叙述正确的是 (    )
A.①③B.②④C.①②④D.①②③④
A

试题分析:①AB与CD互为异面直线,正确;②当点F与点D重合时,FH分别与DC?DB就不为异面直线;③EG与FH互为异面直线,正确;④当点E与点A重合时,EG与AB不为异面直线.
点评:在做本题时要注意点的特殊性;尤其是E、F、G、H、为端点的情况。因此我们在做题时要考虑全面。属于有中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,给出下列四个命题:
①若②若③若④若
其中正确的命题是(   )
A.①④B.②④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,EF分别是ABPD的中点.

(Ⅰ)求证:平面PCE 平面PCD
(Ⅱ)求四面体PEFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是直角梯形,,∠,平面⊥平面.

(1)求证:⊥平面
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,表示不同平面,下列命题正确的是      (    )
A.若m‖,m‖ n,则n‖
B.若m,n,m‖,n‖,则
C.若, m,mn,则n‖
D.若, m,n‖m,n,则n‖

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.

(1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为__    ____.

查看答案和解析>>

同步练习册答案