精英家教网 > 高中数学 > 题目详情
19.如图所示,三棱柱A1B1C1-ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中点.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.

分析 (1)要证平面AB1C⊥平面A1BD,只需在平面AB1C内找一条直线(A1B)垂直平面A1BD即可;
(2)设AB1∩A1B=F,连接EF,FD,C1E,由EF=$\frac{1}{2}$AA1,EF∥AA1,且C1D=$\frac{1}{2}$AA1,C1D∥AA1
可得EF∥C1D,且EF=C1D,四边形EFDC1是平行四边形即可得到,当E为A1B1的中点时,C1E∥平面A1BD.

解答 解:(Ⅰ)∵AA1⊥底面ABC,AC?平面ABC,∴AA1⊥AC,
又∵AB⊥AC,AA1∩AB=A,∴AC⊥平面ABB1A1
又∵A1B?平面ABB1A1,∴AC⊥A1B,
∵AB=AA1,∴A1B⊥AB1
又∵AB1∩AC=A,∴A1B⊥平面AB1C,
又∵A1B?平面A1BD,∴平面AB1C⊥平面A1BD.…(6分)
(Ⅱ)当E为A1B1的中点时,C1E∥平面A1BD.下面给予证明.
设AB1∩A1B=F,连接EF,FD,C1E,
∵EF=$\frac{1}{2}$AA1,EF∥AA1,且C1D=$\frac{1}{2}$AA1,C1D∥AA1
∴EF∥C1D,且EF=C1D,
∴四边形EFDC1是平行四边形,
∴C1E∥FD,又∵C1E?平面A1BD,FD?平面A1BD,
∴C1E∥平面A1BD.…(12分)

点评 本题考查平面和平面垂直的判定和性质、线面平行的推导.解决此类问题的关键是熟练掌握有关定理以及空间几何体中点、线、面之间的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={a,1},B={a2,0},那么“a=-1”是“A∩B≠∅”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某调查者从调查中获知某公司近年来科研费支出(xi) 用与公司所获得利润(yi)的统计资料如表:
科研费用支出(xi)与利润(yi)统计表   单位:万元
年份科研费用支出(xi利润(yi
2011
2012
2013
2014
2015
2016
5
11
4
5
3
2
31
40
30
34
25
20
合计30180
(1)由散点图可知,科研费用支出与利润线性相关,试根据以上数据求出y关于x的回归直线方程;
(2)当x=xi时,由回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$得到的函数值记为$\stackrel{∧}{{y}_{i}}$,我们将ε=|$\stackrel{∧}{{y}_{i}}$-yi|称为误差;
在表中6组数据中任取两组数据,求两组数据中至少有一组数据误差小于3的概率;
参考公式:用最小二乘法求线性回归方程的系数公式:
$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-}\overline y)}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\frac{1}{1-x},x<0}\end{array}\right.$,则f(f(-3))等于(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.命题“若x2-5x-6=0”则“x=2”的逆否命题是“若x≠2”则“x2-5x-6≠0”
B.若命题p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,则¬p:对任意x∈R,x2+x+1≥0
C.若x,y∈R,则x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在C上存在一点P,使得|PO|=$\frac{1}{2}$|F1F2|(O为坐标原点),且直线OP的斜率为$\sqrt{3}$,则,双曲线C的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{3}+\frac{y^2}{2}=1$上的动点P与其顶点$A(-\sqrt{3},0)$,$B(\sqrt{3},0)$不重合.
(Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是(  )
A.$\frac{4π}{3}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

同步练习册答案