精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)是偶函数,当x>0时,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲线y=f(x)在点(-1,f(-1))处切线的斜率为-1,则实数a的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 由偶函数的定义,可得x<0时,f(x)的解析式,求得导数,可得切线的斜率,解方程即可得到a的值.

解答 解:函数f(x)是偶函数,当x>0时,f(x)=$\frac{a{x}^{2}}{x+1}$,
可得x<0时,f(x)=f(-x)=$\frac{a{x}^{2}}{-x+1}$,
导数f′(x)=$\frac{ax(2-x)}{(1-x)^{2}}$,
由题意可得f′(-1)=$\frac{-3a}{4}$=-1,
解得a=$\frac{4}{3}$.
故选:B.

点评 本题考查函数的奇偶性的运用,考查导数的运用:求切线的斜率,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知复数z满足$\frac{z}{z+3i}$=1+4i,则复数z的虚部为(  )
A.-3B.11C.11iD.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,B($\sqrt{3}$,0)、C(-$\sqrt{3}$,0),动点A满足sinB+sinC=$\frac{2\sqrt{3}}{3}$sinA.
(1)求动点A的轨迹D的方程;
(2)若点P($\frac{1}{2}$,$\frac{1}{4}$),经过点P作一条直线l与轨迹D相交于点M,N,并且P为线段MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{sin(x+α),x<0}\\{cos(x+β),x>0}\end{array}\right.$是偶函数,则下列结论可能成立的是(  )
A.α=$\frac{π}{4}$,β=-$\frac{π}{4}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知球O的表面积是其直径的$2\sqrt{3}π$倍,则球O的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设P为椭圆$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{\sqrt{3}}{2}$. 
(1)求椭圆的标准方程;
(2)设点E的轨迹为曲线C1,直线l:y=x+m交C1于M,N两点,线段MN的垂直平分线经过点P(1,0),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两直线l1:ax-y+2=0和l2:x+y-a=0的交点在第一象限,则实数a的取值范围是a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)在[-3,4]上的图象是一条连续的曲线,且其部分对应值如表:
x-3-2-101234
f(x)6m-4-6-6-4n6
则函数f(x)的零点所在区间有(  )
A.(-3,-1)和(-1,1)B.(-3,-1)和(2,4)C.(-1,1)和(1,2)D.(-∞,-3)和(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为(  )
A.120万元B.160万元C.220万元D.240万元

查看答案和解析>>

同步练习册答案