精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

【答案】1)单调递增区间为,单调递减区间为.函数有极大值且为没有极小值.2

【解析】

1)通过求导,得到导函数零点为,从而可根据导函数正负得到单调区间,并可得到极大值为,无极小值;(2)由最大值为可将问题转化为有解;通过假设,求出的最小值,即为的最小值.

1)由得:

,则,解得

时,

时,

的单调递增区间为,单调递减区间为

时,函数有极大值没有极小值

2)当时,由(1)知,函数处有最大值

又因为

方程有解,必然存在,使

等价于方程有解,即上有解

,令,得

时,单调递减

时,单调递增

所以当时,

所以实数的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn,满足:对任意的nN*,都有an+1+Sn+11,又a1

1)求数列{an}的通项公式;

2)令bnlog2an,求nN*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆相交于不同的两点A,B.

(1)求线段AB的中点M的轨迹C的方程;

(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆过点,离心率为,左右焦点分别为,过点的直线交椭圆于两点。

(1)求椭圆的方程;

(2)当的面积为时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,底面为正方形的四棱锥PABCD中,AB=2PA=4PB=PD=ACBD相交于点OEPD中点.

(1)求证:EO//平面PBC

(2)设线段BC上点F满足CF=2BF,求锐二面角EOFC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:

产地

批发价格

市场份额

市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.

(1)从该地批发市场销售的富士苹果中随机抽取一箱,求该箱苹果价格低于元的概率;

(2)按市场份额进行分层抽样,随机抽取箱富士苹果进行检验,

①从产地共抽取箱,求的值;

②从这箱苹果中随机抽取两箱进行等级检验,求两箱产地不同的概率;

(3)由于受种植规模和苹果品质的影响,预计明年产地的市场份额将增加,产地的市场份额将减少,其它产地的市场份额不变,苹果销售价格也不变(不考虑其它因素).设今年苹果的平均批发价为每箱元,明年苹果的平均批发价为每箱元,比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是通过某城市开发区中心O的两条南北和东西走向的街道,连结MN两地之间的铁路线是圆心在上的一段圆弧,若点M在点O正北方向3公里;点N到的距离分别为4公里和5公里.

1)建立适当的坐标系,求铁路线所在圆弧的方程;

2)若该城市的某中学拟在点O的正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4公里,并且铁路上任意一点到校址的距离不能小于公里,求该校址距点O的最短距离(注:校址视为一个点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数上单调递减,且,则的值(  )

A. 恒为正B. 恒为负C. 恒为0D. 无法确定

查看答案和解析>>

同步练习册答案