精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)证明:当时,函数)有最小值.记的最小值为,求的值域;

(Ⅲ)若存在两个不同的零点 ),求的取值范围,并比较与0的大小.

【答案】(Ⅰ) 单调递增; (Ⅱ); (Ⅲ)见解析.

【解析】试题分析:

()首先求得函数的定义域,然后结合导函数的解析式可得 单调递增;

()结合(1)的结论可得.结合新函数的性质有值域为

()结合导函数的性质,可得实数a的取值范围为,构造新函数即可证得题中的结论

试题解析:

(Ⅰ)的定义域为.

当且仅当时, ,所以 单调递增,

(Ⅱ)

由(Ⅰ)知, 单调递增,

对任意

因此,存在唯一,使得.

时, 递减,当时, 递增.

所以有最小值.

,所以上递增.

所以,即的值域为

(Ⅲ)定义域为

时, 上递增,舍.

时, 上递增,在上递减,

所以 .

所以上递增, ,即

所以

,所以 且在上递减

所以,即 .

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单位圆O上的两点A,B及单位圆所在平面上的一点P,满足 =m + (m为常数).

(1)如图,若四边形OABP为平行四边形,求m的值;
(2)若m=2,求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,B1C与对角面DD1B1B所成角的大小是(
A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且 的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,求数列的通项公式;

(Ⅲ)在(Ⅱ)的条件下,设,问是否存在实数使得数列)是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且B(﹣ ),∠AOB=α.

(1)求 的值;
(2)设∠AOP=θ( ≤θ≤ π), = + ,四边形OAQP的面积为S,f(θ)=( ﹣1)2+ S﹣1,求f(θ)的最值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若曲线在点处的切线斜率为0,且有极小值,

求实数的取值范围.

(2)当 时,若不等式: 在区间内恒成立,求实数的最大值.

查看答案和解析>>

同步练习册答案