精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,下列说法正确的是(
A.函数f(x)的图象关于直线x=﹣ 对称
B.函数f(x)的图象关于点(﹣ ,0)对称
C.若方程f(x)=m在[﹣ ,0]上有两个不相等的实数根,则实数m∈(﹣2,﹣ ]
D.将函数f(x)的图象向左平移 个单位可得到一个偶函数

【答案】C
【解析】解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象,可得A=2, = ,∴ω=2.

再根据五点法作图,可得2 +φ=π,∴φ= ,f(x)=2sin(2x+ ).

当x=﹣ 时,f(x)=0,不是最值,故函数f(x)的图象不关于直线x=﹣ 对称,故排除A;

当x=﹣ 时,f(x)=﹣2,是最值,故函数f(x)的图象关于直线x=﹣ 对称,故排除B;

在[﹣ ,0]上,2x+ ∈[﹣ ],方程f(x)=m在[﹣ ,0]上有两个不相等的实数根,则实数m∈(﹣2,﹣ ],故C正确;

将函数f(x)的图象向左平移 个单位,可得y=2sin(2x+ + )=﹣sin2x 的图象,故所得函数为奇函数,故排除D,

故选:C.

【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若x,y满足 且z=y﹣x的最小值为﹣4,则k的值为(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,其前n项和为Sn , 且满足an= (n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+ S2+ S3+…+ Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的单调递增区间
(Ⅱ)若sin2x+af(x+ )+1>6cos4x对任意x∈(﹣ )恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+bx﹣2<0的解集为{x|﹣2<x< },则ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax﹣1|﹣(a﹣1)x
(1)当a= 时,满足不等式f(x)>1的x的取值范围为
(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为

查看答案和解析>>

同步练习册答案