精英家教网 > 高中数学 > 题目详情
17.一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径(直径)为4.8m,深度为0.5m.
(1)试建立适当的坐标系,求抛物线的标准方程和焦点坐标.
(2)为了增强卫星波束的接收,拟将接收天线的口径增大为5.2m,求此时星波束反射聚集点的坐标.

分析 (1)建立坐标系,设出抛物线的标准方程y2=2px(p>0),代入点(0.5,2.4),解方程可得p,进而得到抛物线的方程,求得焦点的坐标;
(2)设出抛物线的标准方程y2=2mx(p>0),代入点(0.5,2.4),解方程可得m,进而得到抛物线的方程,求得焦点的坐标.

解答 解:(1)以顶点为原点,焦点所在直线为x轴,
建立直角坐标系xOy,
设抛物线的方程为y2=2px(p>0),
代入点(0.5,2.4),
可得2.42=2p•0.5,
解得p=5.76,
即抛物线的方程为y2=11.52x,
焦点为(2.88,0);
(2)设抛物线的方程为y2=2mx(m>0),
代入点(0.5,2.6),
可得2.62=2m•0.5,
解得m=6.76,
即有抛物线的方程为y2=13.52x,
焦点为(3.38,0).

点评 本题考查抛物线的模型的运用,考查抛物线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.抛物线x2=2py,(p>0)在x=1处的切线方程为2x-2y-1=0,则抛物线的准线为(  )
A.x=-$\frac{1}{2}$B.x=-1C.y=-$\frac{1}{2}$D.y=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,过椭圆的左顶点A作两条互相垂直的直线分别交椭圆与P、Q连接PQ.
(1)问直线PQ是否过一定点,如果经过定点求出该点坐标,否则请说明理由;
(2)求△APQ面积取最大值时,直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,且这两个交点所成的线段的中点P(0,1),则直线l的方程是2x+3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若向量$\overrightarrow{a}$=(-3,5),$\overrightarrow{b}$=(x,y),且2$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则(x,y)等于(  )
A.(6,-10)B.(-6,10)C.(-$\frac{3}{2}$,$\frac{5}{2}$)D.($\frac{3}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用五点作图法作出函数y=cos(2x-$\frac{π}{3}$),x∈[0,π]的图象,并写出其单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,棱长为2的正方体ABCD-A1B1C1D1中,点E,F在线段A1B1上运动,且|EF|=1,点G在线段AD上运动,H是线段CD的中点,设DG=x(0<x<2),则三棱锥G-EFH的体积V(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在空间中,已知平面α过点(3,0,0)和点(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy上的夹角为45°,则a=$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-3x<0,x∈Z},B={0,a},若A∩B≠∅,则实数a等于(  )
A.1B.2C.1或2D.1或2或3

查看答案和解析>>

同步练习册答案