分析 (1)求出f(x)的导数,再求g(x)的导数,讨论a≤0,a>0,判断导数的符号,即可得到所求单调区间;
(2)由(1)的单调区间,可得最小值,进而解得a=1;
(3)当x≥0时,f(x)=ex-$\frac{1}{2}$x2-x-1≥f(0)=0,结合x-sinx的大小,运用不等式的性质,即可得证.
解答 解:(1)f(x)=ex-$\frac{a}{2}$x2-x-1的导数为f′(x)=ex-ax-1,
g′(x)=ex-a,
当a≤0时,g′(x)>0,g(x)递增;
当a>0时,x>lna时,g′(x)>0,g(x)递增;
x<lna时,g′(x)<0,g(x)递减.
即有a≤0时,g(x)的增区间为R;
a>0时,g(x)的增区间为(lna,+∞),减区间为(-∞,lna);
(2)当a≤0时,g(x)递增,无最小值;
当a>0时,g(x)在x=lna处取得极小值,也为最小值,
即有g(lna)=a-alna-1,
令h(a)=a-alna-1,h′(a)=1-(1+lna)=-lna,
0<a<1时,h(a)递增;a>1时,h(a)递减.
即有h(a)≤h(1)=0,
由g(x)的最小值为0,即有a=1;
(3)证明:当x≥0时,f(x)=ex-$\frac{1}{2}$x2-x-1≥f(0)=0,
即有ex-x-1≥$\frac{1}{2}$x2,
ex-1-x-$\frac{1}{2}$xsinx≥$\frac{1}{2}$x2-$\frac{1}{2}$xsinx=$\frac{1}{2}$x(x-sinx),
令p(x)=x-sinx,x≥0,p′(x)=1+cosx≥0,p(x)在x≥0递增,
即有p(x)≥p(0)=0,即x≥sinx,
则ex-1-x-$\frac{1}{2}$xsinx≥0,
故当x≥0时,ex-x-1≥$\frac{1}{2}$xsinx.
点评 本题考查导数的运用:求单调区间和极值和最值,考查分类讨论的思想方法和不等式的证明,注意运用构造函数的思想方法,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,3] | B. | (-∞,-1] | C. | [1,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com