精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)当时, 恒成立,求的最大值;

(3)设,若的值域为,求的取值范围.(提示:

【答案】(1) ;(2) ;(3) .

【解析】试题分析:

(1)首先求解导函数,利用导函数求得斜率即可求得切线方程;

(2)结合题意构造新函数,讨论函数g(x)的最小值可得的最大值为.

(3)构造函数,结合导函数的性质得到关于实数t的不等式组,求解不等式组可得的取值范围是.

试题解析:

(1)∵

,又

∴所求切线方程为,即.

(2)当时, ,即恒成立,

时, 递减;当时, 递增.

的最大值为.

(3)

.

∴当时, 取得极小值,当时, 取得极大值.

, ,∴.

.∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,4]时,f(x)=x2﹣2x , 则函数f(x)在区间[0,2016]上的零点个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题: ①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后掷子(子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数且x≠y”,则概率P(B|A)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼
的时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

总人数

20

36

44

50

40

10

将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(Ⅰ)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

(Ⅱ)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中, 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线.

(1)求的普通方程及的直角坐标方程,并说明它们分别表示什么曲线;

2)若分别为 上的动点,且的最小值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为(
A.-
B.0
C.
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,则y≥x的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案