【题目】在直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)以为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为,(),直线与曲线交于,两点,求线段的长度.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)已知点,点为曲线上的动点,求线段的中点到直线的距离的最大值.并求此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为,写出的一个阿波罗尼斯圆的标准方程__________;②△中,,则当△面积的最大值为时,______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和C的直角坐标方程;
(2)直线上的点为曲线内的点,且直线与曲线交于,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直四棱柱中,底面是边长为6的正方形,点在线段上,且满足,过点作直四棱柱外接球的截面,所得的截面面积的最大值与最小值之差为,则直四棱柱外接球的半径为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布,其中近似为这1000个产品的质量指标值的平均数,近似为这1000个产品的质量指标值的方差(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在之内,就认为机器处于正常状态,否则,认为机器处于故障状态.
(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:
29 45 55 63 67 73 78 87 93 113
请判断该机器是否出现故障?
(2)若机器出现故障,有2种检修方案可供选择:
方案一:加急检修,检修公司会在当天排除故障,费用为700元;
方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元.
现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?
附:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线()上的两个动点和,焦点为F.线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等边三角形,,P,Q依次为AC,AB上的点,且线段PQ将分为面积相等的两部分,设,,.
(1)用解析式将t表示成x的函数;
(2)用解析式将y表示成x的函数;
(3)求y的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO为,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com