精英家教网 > 高中数学 > 题目详情
17.某四棱锥的三视图如图所示,则该四棱锥的底面的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 由三视图可知,该四棱锥的底面是正视图中的梯形,即可求出其面积.

解答 解:由三视图可知,该四棱锥的底面是正视图中的梯形,面积为$\frac{(0.5+1)×1}{2}$=$\frac{3}{4}$,
故选D.

点评 本题考查三视图,考查学生的计算能力,确定四棱锥的底面是正视图中的梯形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.4$\sqrt{3}$B.4$\sqrt{2}$C.4D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名五年级学生进行了问卷调查得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a,b∈R,定义运算“?”:a?b=$\left\{\begin{array}{l}{aa-b≤1}\\{ba-b>1}\end{array}\right.$,函数f(x)=(x2-2)?(x-1),x∈R,若方程f(x)-a=0只有两个不同实数根,则实数a的取值范围是(  )
A.[-2,-1]∪(1,2)B.(-2,-1]∪(1,2]C.[-2,-1]∪[1,2]D.(-2,-1]∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序如图所示,该程序运行后输出的最后一个数是(  )
A.$\frac{17}{16}$B.$\frac{9}{8}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线f(x)=ax3+bx2在x=1处的切线为y=3x-1,求:
(1)求f(x)的解析式;
(2)求过原点的f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线x+y=0与圆x2+(y-a)2=1相切,则a的值为(  )
A.1B.±1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$sin(3π-θ)=\frac{{\sqrt{5}}}{2}sin(\frac{π}{2}+θ)(θ∈R)$,则$cos(θ-\frac{π}{3})$=±($\frac{1}{3}$+$\frac{\sqrt{15}}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系中正确的是(  )
A.sin15°<sin163°<cos74°B.sin15°<cos74°<sin163°
C.sin163°<sin15°<cos74°D.cos74°<sin163°<sin15°

查看答案和解析>>

同步练习册答案