【题目】已知函数.
(Ⅰ)若,求函数的极值;
(Ⅱ)若, , ,使得(),求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,设椭圆的焦点为,过右焦点的直线与椭圆相交于两点,若的周长为短轴长的倍.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设的斜率为,在椭圆上是否存在一点,使得?若存在,求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x , x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+ (a<1)的定义域为B.
(1)求集合A,B;
(2)若BA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的直线与中心在原点,焦点在轴上且离心率为的椭圆相交于、两点,直线过线段的中点,同时椭圆上存在一点与右焦点关于直线对称.
(1)求直线的方程;
(2)求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).
(Ⅰ)求直线的直角坐标方程和曲线的普通方程;
(Ⅱ)曲线交轴于两点,且点, 为直线上的动点,求周长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)若f(x)=x+ ,函数在(0,a]上的最小值为4,求a的值;
(2)对于(1)中的函数在区间A上的值域是[4,5],求区间长度最大的A(注:区间长度=区间的右端点﹣区间的左断点);
(3)若(1)中函数的定义域是[2,+∞)解不等式f(a2﹣a)≥f(2a+4).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为, , 为椭圆上一点,且到两个焦点的距离之和为6.
(1)求椭圆的标准方程;
(2)若已知直线,当为何值时,直线与椭圆有公共点?
(3)若,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com