精英家教网 > 高中数学 > 题目详情
已知α,β是锐角,且α≠45°,若cos(α-β)=sin(α+β),则tanβ=
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由和差角的公式和因式分解可化原式为(sinα-cosα)(sinβ-cosβ)=0,由题意可得sinα-cosα≠0,故sinβ=cosβ,由同角三角函数基本关系可得.
解答: 解:∵cos(α-β)=sin(α+β),
∴cosαcosβ+sinαsinβ=sinαcosβ+cosαsinβ,
∴(sinα-cosα)sinβ=(sinα-cosα)cosβ,
∴(sinα-cosα)(sinβ-cosβ)=0,
∵α,β是锐角,且α≠45°,∴sinα-cosα≠0,
∴sinβ-cosβ=0,即sinβ=cosβ,
∴tanβ=
sinβ
cosβ
=1
故答案为:1
点评:本题考查三角函数公式,因式分解是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,过点F作斜率为2的直线l使它与圆x2+y2=b2相切,则椭圆离心率是(  )
A、
2
2
B、
3
2
C、
5
3
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的不等式x2-2x-(a2-2a)<0的解集为A,若2∈A,则实数a的取值范围为(  )
A、(0,2)
B、(-∞,0)
C、(2,+∞)
D、(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=a,an+1=
1
2
an2-an
+2,其中n∈N*
(Ⅰ)是否存在实数a使得{an}为等差数列,若存在,求出a的值,若不存在,请说明理由;
(Ⅱ)当a=4时,证明:
1
a1
+
1
a2
+…+
1
an
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+b)的图象经过点(-3,0),和(0,-2),则a+b的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|logax|.
(1)当a=2时,求函数f(x)-3的零点;
(2)若存在互不相等的正实数m,n,使f(m)=f(n),判断函数g(x)=mx+nx-1的奇偶性,并证明你的结论;
(3)在(2)的条件下,若m>n,当x>m时,求函数y=logmxlognx+logmx的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(2π-α)cos(
π
3
+2α)cos(π-α)
tan(α-3π)sin(
π
2
+α)sin(
6
-2α)
=(  )
A、-cosαB、cosα
C、sinαD、-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),a>1,对于定义域内的x1,x2有0<x1<x2<1,给出下列结论:
①(x2-x1)[f(x2)-f(x1)]<0;
②x2f(x1)<x1f(x2);
③f(x2)-f(x1)>x1-x2
f(x1)+f(x2)
2
<f(
x1+x2
2
).
其中正确结论的序号是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(  )
A、5
2
B、20
2
C、15
2
D、10
2

查看答案和解析>>

同步练习册答案