精英家教网 > 高中数学 > 题目详情
选修4-4:矩阵与变换
已知矩阵A=
.
1a
-1b
.
,A的一个特征值λ=2,其对应的特征向量是α1=
.
2
1
.

(Ⅰ)求矩阵A;
(Ⅱ)求直线y=2x在矩阵M所对应的线性变换下的像的方程.
分析:(I)根据特征值与特征向量的定义建立等式关系,解方程即可求出矩阵A;
(II)因为矩阵M所对应的线性变换将直线变成直线(或点),所以可取直线y=2x上的两点,求出两点在矩阵A的作用下的点的坐标,从而求出直线y=2x在矩阵M所对应的线性变换下的像的方程.
解答:解:(I)由
1a
-1b
 
2
1
=2
2
1
,得
2+a=4
-2+b=2
,解得A=
12
-14
…(2分)
(II)因为矩阵M所对应的线性变换将直线变成直线(或点),
所以可取直线y=2x上的两点(0,0),(1,2),…(4分)
12
-14
 
0
0
=
0
0
12
-14
 
1
2
=
5
-7
 ]
得:
点(0,0),(1,3)在矩阵M所对应的线性变换下的像是(0,0),(5,-7),…(6分)
从而直线y=2x在矩阵M所对应的线性变换下的像的方程为7x+5y=0.…(7分)
点评:本题主要考查了二阶矩阵,以及特征值与特征向量和特殊的矩阵变换,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三第八次月考理科数学试卷 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分

(1)(本小题满分7分)选修4-2:矩阵与变换

变换是将平面上每个点的横坐标乘,纵坐标乘,变到点.

(Ⅰ)求变换的矩阵;

(Ⅱ)圆在变换的作用下变成了什么图形?

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知极点与原点重合,极轴与x轴的正半轴重合.若曲线的极坐标方程为:,直线的参数方程为:为参数).

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)直线上有一定点,曲线交于M,N两点,求的值.

(3)(本小题满分7分)选修4-5:不等式选讲

 已知为实数,且

(Ⅰ)求证:

(Ⅱ)求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省高三模拟考试数学(理科)试题 题型:解答题

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-4:坐标系与参数方程

 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆为圆心、为半径。

(I)求直线的参数方程和圆的极坐标方程;

(II)试判定直线和圆的位置关系.

(2)(本小题满分7分)选修4-4:矩阵与变换

把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.

(3)(本小题满分7分)选修4-5:不等式选讲

关于的一元二次方程对任意无实根,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-2  矩阵与变换
T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M(2x,4y).圆C:x2+y2=1在变换T的作用下变成了什么图形?

查看答案和解析>>

同步练习册答案