精英家教网 > 高中数学 > 题目详情
是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立,其中Sn为{an}的前n项和,若存在,试求出常数k和数列{an}的通项;若不存在,试说明理由.
分析:设an=pn+q(p,q为常数),则Kan2-1=kp2n2+2kpqn+kq2-1,
Sn=
1
2
pn(n+1)+qnS2n-Sn+1=
3
2
pn2+(q-
p
2
)n-(p+q)

kp2n2+2kpqn+kp2-1=
3
2
pn2+(q-
p
2
n)-(p+q)
,故有
kp2=
3
2
p…①
2kpq=q-
p
2
…②
kq2-1=-(p+q)…③
,由此能够求出常数k=
81
64
及等差数列an=
32
27
n-
8
27
满足题意.
解答:解:假设存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立.
设an=pn+q(p,q为常数),则Kan2-1=kp2n2+2kpqn+kq2-1,
Sn=
1
2
pn(n+1)+qnS2n-Sn+1=
3
2
pn2+(q-
p
2
)n-(p+q)

kp2n2+2kpqn+kp2-1=
3
2
pn2+(q-
p
2
n)-(p+q)

故有
kp2=
3
2
p…①
2kpq=q-
p
2
…②
kq2-1=-(p+q)…③


由①得p=0或kp=
3
2
.当p=0时,由②得q=0,而p=q=0不适合③,故p≠0把kp=
3
2
代入②,得q=-
p
4
q=-
p
4
代入③,又kp=
3
2
p=
32
27
,从而q=-
8
27
,k=
81
64
.故存在常数k=
81
64
及等差数列an=
32
27
n-
8
27
满足题意.
点评:本题考查数列的性质和应用,解题时先假设存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立.然后再根据题设条件进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011届湖北省夷陵中学、钟祥一中高三第二次联考数学理卷 题型:解答题

(12分)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;
(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三11月月考理科数学试卷 题型:解答题

(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和

(1)若,求的值;

(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立;

(3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题

(12分)设{an}是由正数组成的等差数列,Sn是其前n项和

    (1)若Sn=20,S2n=40,求S3n的值;

    (2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;

    (3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案