【题目】如图,在平行四边形ABCD中,,四边形ACEF为正方形,且平面平面ACEF.
(1)证明:;
(2)求平面BEF与平面BCF所成锐二面角的余弦值.
【答案】(1)见解析 (2) .
【解析】
(1)利用余弦定理得到,证明,,得到平面ACEF得到答案.
(2)分别以AB,AC,AF所在直线为轴,建立如图所示的空间直角坐标系,计算平面BEF的一个法向量,平面BCF的一个法向量为,计算夹角得到答案.
(1)在平行四边形ABCD中,,
在中,由余弦定理得:,
即,
由,
所以
又四边形ACEF为正方形,所以,
又平面平面ACEF,平面平面ACEF=AC
所以平面ABCD,所以,
又,所以平面ACEF,平面ACEF
所以.
(2)由AB,AC,AF两两垂直,分别以AB,AC,AF所在直线为轴,建立如图所示的空间直角坐标系,则
设平面BEF的一个法向量,,
则取
同理可得平面BCF的一个法向量为
设平面BEF与平面BCF所成锐二面角的平面角为,
则.
平面BEF与平面BCF所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形为菱形,,,E,F分别为,的中点.
(1)求证:平面;
(2)点G是线段上一动点,若与平面所成最大角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为,后2天均为,且每一天出现雾霾与否是相互独立的.
(1)求未来5天至少一天停止课间操的概率;
(2)求未来5天组织课间操的天数X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学随机抽取部分高一学生调查其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是,样本数据分组为,,,,.
(Ⅰ)求直方图中的值;
(Ⅱ)从学校全体高一学生中任选名学生,这名学生中自主安排学习时间少于分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有5个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有3个公共点;
④把函数的图象向右平移得到的图象;
⑤角为第一象限角的充要条件是.
其中,真命题的编号是______(写出所有真命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且0,若过 A,Q,F2三点的圆恰好与直线相切,过定点 M(0,2)的直线与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线的斜率,在x轴上是否存在点P(,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由;(Ⅲ)若实数满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其北偏东方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处.
(1)求此时该外国船只与岛的距离;
(2)观测中发现,此外国船只正以每小时海里的速度沿正南方航行.为了将该船拦截在离岛海里的处(在的正南方向),不让其进入岛海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到,速度精确到海里/小时).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com