精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求函数的极值和单调区间;

(2)若在区间上至少存在一点,使得成立,求实数的取值范围.

【答案】(1)的极小值为的单调递增区间为,单调递减区间为;(2).

【解析】

试题分析:(1),由此求得时,有极小值为的单调递增区间为,单调递减区间为2,得到,若在区间上存在一点,使得成立,即在区间上的最小值小于.对分成三类进行分类讨论,由此求得实数的取值范围.

试题解析:

(1)当,令,得

的定义域为,由,由,得

所以时,有极小值为1,

的单调递增区间为,单调递减区间为................5分

(2),且,令,得到,若在区间上存在一点,使得成立,即在区间上的最小值小于0.

,即时,恒成立,即在区间上单调递减,

在区间上的最小值为

,得,即............................8分

,即时,

,则成立,所以在区间上单调递减,

在区间上的最小值为

显然,在区间上的最小值小于0不成立,

,即时,则有

0

极小值

所以在区间上的最小值

,解得,即

综上,由①②可知:............................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,函数.

(1)求证: 不是上的奇函数;

(2)若上的单调函数,求实数的值;

(3)若函数在区间上恰有3个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为的导函数.

(1)求方程的解集;

(2)求函数的最大值与最小值;

(3)若函数在定义域上恰有2个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设

)求的单调区间和最小值;

)讨论的大小关系;

)求的取值范围,使得对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.

(1)根据以上数据建立一个的列联表;

(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?

独立检验临界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对绵阳南山实验学校的500名教师的年龄进行统计分析,年龄的频率分布直方图如图所示,规定年龄在内的为青年教师,内的为中年教师,内的为老年教师.

(1)求年龄内的教师人数;

(2)现用分层抽样的方法从中、青年中抽取18人进行同课异构课堂展示,求抽到年龄在内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用10分制调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

)若教学满意度不低于9.5分,则称该生对教师的教学满意度为极满意.求从这16人中随机选取3人,至少有1人是极满意的概率;

)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到极满意的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),,且直线与曲线相切.

(1)求的值;

(2)若对内的一切实数,不等式恒成立,求实数的取值范围;

(3)求证: ).

查看答案和解析>>

同步练习册答案