精英家教网 > 高中数学 > 题目详情
17.在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上随机地取一个数x,则事件“tanx≥$\sqrt{3}$”发生的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 先化简不等式,确定事件“tanx≥$\sqrt{3}$”在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的x∈[$\frac{π}{3}$,$\frac{π}{2}$),根据几何概型利用长度之比可得结论.

解答 解:事件“tanx≥$\sqrt{3}$”在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的x∈[$\frac{π}{3}$,$\frac{π}{2}$),长度为$\frac{π}{2}-\frac{π}{3}$=$\frac{π}{6}$,
区间(-$\frac{π}{2}$,$\frac{π}{2}$)的长度为$\frac{π}{2}$-($\frac{π}{2}$)=π,
∴在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上随机地取一个数x,事件“tanx≥$\sqrt{3}$”发生的概率为$\frac{1}{6}$.
故选:A.

点评 本题考查几何概型,考查三角函数的化简,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知正数数列{an}的前n项和为Sn,满足an=($\sqrt{S_n}+\sqrt{{S_{n-1}}}$)(n≥2,n∈N*),a1=1.
(Ⅰ)求证:{$\sqrt{S_n}\}$是等差数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=$\frac{4n}{{a_n^2•a_{n+1}^2}}$,数列{bn}的前n项和为Tn,求使得Tn<$\frac{m}{10}$对于所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列中,若S10=10,S20=30,则S30等于(  )
A.50B.60C.70D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定点A(7,0),B(1,0),平面上动点P到A点的距离与到B点的距离之比为λ(λ>0,且为常数)
(I)求动点P的轨迹方程,并说明方程表示的曲线;
(II)当λ=2时,记P点的轨迹与y轴交于M、N两点,若过点P做圆C:(x-1)2+y2=1的两条切线l1、l2分别交y轴于H、K两点,在构成三角形的条件下,求$\frac{{{S_△}_{PMN}}}{{{S_{△PHK}}}}$得最大值,并指出取得最大值时的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若cosα=-$\frac{{\sqrt{3}}}{2}$,且角α的顶点为坐标原点、始边为x轴的正半轴,终边经过点P(x,2),则P点的横坐标x是(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.-2$\sqrt{2}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,长为4的线段AB的两个端点A和B分别在x轴正半轴和y正半轴上滑动,T为AB的中点,∠OAB=75°,当线段AB滑动到A1B1位置时,∠OA1B1=45°.线段在滑动时点T运动到T1点,则点T运动的路程为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

已知函数的图像在点处切线的斜率为,记奇函数的图像为

(1)求实数的值;

(2)当时,图像恒在的上方,求实数的取值范围;

(3)若图像有两个不同的交点,其横坐标分别是,设,求证:.[来

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若一个椭圆长轴的长度、短轴的长度和焦距成等比数列,则该椭圆的离心率是(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{-1±\sqrt{5}}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

过椭圆的左顶点作斜率为的直线交椭圆于点,交轴于点中点,定点满足:对于任意的都有,则点的坐标为

查看答案和解析>>

同步练习册答案