精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,原点到过点A(a,0),B(0,b)的直线的距离是
4
5
5

(1)求椭圆C的方程;
(2)若椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求x12+y12的取值范围.
(3)如果直线y=kx+1(k≠0)交椭圆C于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的值.
分析:(1)利用椭圆的离心率e=
c
a
,a2=b2+c2,及其点到直线的距离公式即可得到a,b;
(2)利用轴对称即可得到点P(x0,y0)与其对称点P1(x1,y1)的坐标之间的关系,再利用点P(x0,y0)满足椭圆C的方程:
x2
16
+
y2
4
=1
得到关系式,进而即可求出;
(3)设E(x2,y2),F(x3,y3),EF的中点是M(xM,yM),则BM⊥EF得到关系式,把直线EF的方程与椭圆的方程联立得到根与系数的关系即可.
解答:解:(1)∵e=
c
a
=
3
2
,a2=b2+c2
∴a=2b.
∵原点到直线AB:
x
a
-
y
b
=1
的距离d=
ab
a2+b2
=
4
5
5

解得a=4,b=2.
故所求椭圆C的方程为
x2
16
+
y2
4
=1

(2)∵点P(x0,y0)关于直线y=2x的对称点为点P1(x1,y1),
y0-y1
x0-x1
×2=-1
y0+y1
2
=2×
x0+x1
2

解得 x1=
4y0-3x0
5
y1=
3y0+4x0
5

x
2
1
+
y
2
1
=
x
2
0
+
y
2
0

∵点P(x0,y0)在椭圆C:
x2
16
+
y2
4
=1
上,
x
2
1
+
y
2
1
=
x
2
0
+
y
2
0
=4+
3
4
x
2
0

∵-4≤x0≤4,∴4≤
x
2
1
+
y
2
1
≤16

x
2
1
+
y
2
1
的取值范围为[4,16].
(3)由题意
y=kx+1
x2+4y2=16
消去y,整理得(1+4k2)x2+8kx-12=0.
可知△>0.
设E(x2,y2),F(x3,y3),EF的中点是M(xM,yM),
x2+x3=-
8k
1+4k2

xM=
x2+x3
2
=-
4k
1+4k2
,yM=kxM+1=
1
1+4k2

kBM=
yM+2
xM
=-
1
k

∴xM+kyM+2k=0.
-4k
1+4k2
+
k
1+4k2
+2k=0

又∵k≠0,
k2=
1
8

k=±
2
4
点评:本题综合考查了椭圆的标准方程及其性质、点到直线的距离公式、直线与椭圆相交问题转化为方程联立得到根与系数的关系、相互垂直的直线斜率之间的关系、中点坐标公式等知识与方法,熟悉解题模式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案