如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求异面直线EF与BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
(Ⅰ)30°(Ⅱ)
【解析】
试题分析:(Ⅰ) 延长AD,FE交于Q.
因为ABCD是矩形,所以
BC∥AD,
所以∠AQF是异面直线EF与BC所成的角.
在梯形ADEF中,因为DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.
(Ⅱ) 方法一:
设AB=x.取AF的中点G.由题意得
DG⊥AF.
因为平面ABCD⊥平面ADEF,AB⊥AD,所以
AB⊥平面ADEF,
所以
AB⊥DG.
所以
DG⊥平面ABF.
过G作GH⊥BF,垂足为H,连结DH,则DH⊥BF,
所以∠DHG为二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得
DG=.
在直角△BAF中,由=sin∠AFB=,得
=,
所以
GH=.
在直角△DGH中,DG=,GH=,得
DH=.
因为cos∠DHG==,得
x=,
所以 AB=.
方法二:设AB=x.
以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则
F(0,0,0),A(-2,0,0),E(,0,0),D(-1,,0),B(-2,0,x),
所以 =(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
设=(x1,y1,z1)为平面BFD的法向量,则
所以,可取=(,1,).
因为cos<,>==,得
x=,
所以
AB=.
考点:异面直线所成角 二面角
点评:本题主要考查空间点、线、面位置关系,异面直线所成角、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com