精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面


(1)若E是PC的中点,证明:平面
(2)试在线段PC上确定一点E,使二面角P- AB- E的大小为,并说明理由.
(1)先证,再证,利用线面垂直的判定定理即可证明
(2)

试题分析:(1)证明:,
,, ,                            4 分
,
中,,,
是PC中点,
  
 
 
                                                                        7分
(2)过E作交AC于G,过G作GH⊥AB,垂足为H,则由知 ,,是二面角的平面角的余角,即.           10分
,则  12分
,
,
                                                                               14分
方法二(向量法)
如图,分别以为x,y,z轴建立空间直角坐标系,设
,则A(0,0,0),B(2,0,0),P(0,0,2),C(1,,0),E()            9分
设平面的一个法向量,则
)                                         11分
而平面PAB的一法向量,                                                       12分
,解得,即                       14分
点评:解决立体几何问题,可以用判定定理和性质定理进行证明,也可以用空间向量求解,两种方法各有利弊,注意用传统的方法证明或求解时,要紧扣相应的判定定理和性质定理,定理中要求的条件缺一不可,而如果用向量解决问题,要注意各个量尤其是角的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,,且
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.
  
                                    图

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。

求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β为 ,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P. Q两点之间距离的最小值为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

菱形边长为,角,沿折起,使二面角 为,则折起后之间的距离是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形与梯形所在的平面互相垂直,,,点在线段上.

(I)当点中点时,求证:∥平面
(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面的中点.

(Ⅰ)证明
(Ⅱ)证明平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面α,和两条不重合的直线m,n,则下列四种说法正确的为(    )
A.若m∥n,nα,则m∥α
B.若m⊥n,m⊥α,则n∥α
C.若mα,n,α∥,则m,n为异面直线
D.若α⊥,m⊥α,n⊥,则m⊥n

查看答案和解析>>

同步练习册答案