精英家教网 > 高中数学 > 题目详情

【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是(
A.36
B.12
C.24
D.18

【答案】B
【解析】解:∵在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1所在的平面内的动点,且满足∠APD=∠MPC, ∴Rt△ADP∽△Rt△PMC,
= =2,
即PD=2PC,
设DO=x,PO=h,作PO⊥CD,
,化简得:3h2=﹣3x2+48x﹣144,0≤x≤6,
根据函数单调性判断:x=6时,3h2最大值为36,
h=2
∵在正方体中PO⊥面BCD,
∴三棱锥P﹣BCD的体积最大值: =12
故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f( )的所有x的和为(
A.﹣3
B.﹣5
C.﹣8
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点平面与线段交于点,确定的位置,说明理由;

并求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足方程(x﹣2)2+(y﹣2)2=1.
(1)求 的取值范围;
(2)求|x+y+l|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且该函数的图象过点(1,5). (Ⅰ)求f(x)的解析式,并判断f(x)的奇偶性;
(Ⅱ)判断f(x)在区间(0,2)上的单调性,并用函数单调性的定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列方程表示的直线倾斜角为135°的是(
A.y=x﹣1
B.y﹣1= (x+2)
C. + =1
D. x+2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC两两垂直,则下列说法正确的是(
A.直线OB∥平面ACD
B.球面经过点A,B,C,D四点的球的直径是
C.直线AD与OB所成角是45°
D.二面角A﹣OC﹣D等于30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<π)图象的最高点D的坐标为 ,与点D相邻的最低点坐标为 . (Ⅰ)求函数f(x)的解析式;
(Ⅱ)求满足f(x)=1的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD ,M为棱PB的中点. (Ⅰ)证明:DM⊥平面PBC;
(Ⅱ)求二面角A﹣DM﹣C的余弦值.

查看答案和解析>>

同步练习册答案