精英家教网 > 高中数学 > 题目详情

【题目】(导学号:05856334)

已知函数f(x)=ln xax2+1.

(Ⅰ)当a=-1时,求函数f(x)的极值;

(Ⅱ)当a>0时,证明:存在正实数λ,使得λ恒成立.

【答案】(1) 函数f(x)有极大值,无极小值(2)见解析

【解析】试题分析:(1)运用求解导数得出f′(x)=+2axx0,判断(0, )单调递增,( +∞)单调递减,

得出f(x)极大值=f=ln+,无极小值.

(2)构造g(x)=,当a0时g(x)的定义域为R,

g′x=g′x==0x1=1x2=1

判断得出g(x)在(﹣∞,x1)(x2,+∞)单调递增,(12)单调递减,求解得出极值,得出存在常数M,得出不等式恒成立.

试题解析:

(Ⅰ)依题意,f(x)=ln xx2+1,x∈(0,+∞),f′(x)=

故当x∈(0,)时,f′(x)>0,

x∈(,+∞)时,f′(x)<0,

故函数f(x)有极大值f()=ln+1=-ln 2+,无极小值.

(Ⅱ)令g(x)= (x>0,a>0),

g′(x)=,令g′(x)=0,解得x1=1-<0(舍去),x2=1+>1,

x变化时,g′(x)与g(x)的变化情况如下表:

x

(0,x2)

x2

(x2,+∞)

g′(x)

0

g(x)

所以函数g(x)在(x2,+∞)上单调递增,在(0,x2)上单调递减.

又因为g(1)=0,当0<x<1时,g(x)=>0;当x>1时,g(x)=<0,

所以当0<x≤1时,0≤g(x)<g(0)=1;当x>1时,g(x2)≤g(x)<0.

M为1,|g(x2)|中最大的数,则||≤λ恒成立Mλ.

综上,当a>0时,存在正实数λ∈[M,+∞),使得对任意的实数x,不等式||≤λ恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(2xb)exF(x)bxln xbR.

(1)b<0,且存在区间M,使f(x)F(x)在区间M上具有相同的单调性,求实数b的取值范围;

(2)F(x1)>b对任意x(0,+)恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知pq为常数, ),又 .

1)求pq的值;

2)求数列的通项公式;

3)是否存在正整数mn,使成立?若存在,求出所有符合条件的有序实数对;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856311)[选修4-4:坐标系与参数方程]

已知曲线C1 (α为参数)与曲线C2ρ=4sin θ(θ为参数).

(Ⅰ)写出曲线C1的普通方程和曲线C2的直角坐标方程;

(Ⅱ)求C1C2公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856325)已知函数f(x)=+eln x,直线lykx(k≠0)与函数f(x)的图象相切于点A(tf(t))(f(t)≠0),则(  )

A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2018届吉林省普通中学高三第二次调研】设椭圆的左焦点为,右顶点为,离心率为,短轴长为,已知是抛物线的焦点.

(1)求椭圆的方程和抛物线的方程;

(2)若抛物线的准线上两点关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图.问:

(1)估计在40名读书者中年龄分布在的人数;

(2)求40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

同步练习册答案